veilid/veilid-core/src/routing_table/node_ref.rs
2023-07-04 00:24:55 -04:00

613 lines
20 KiB
Rust

use super::*;
use crate::crypto::*;
use alloc::fmt;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
pub struct NodeRefBaseCommon {
routing_table: RoutingTable,
entry: Arc<BucketEntry>,
filter: Option<NodeRefFilter>,
sequencing: Sequencing,
#[cfg(feature = "tracking")]
track_id: usize,
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
pub trait NodeRefBase: Sized {
// Common field access
fn common(&self) -> &NodeRefBaseCommon;
fn common_mut(&mut self) -> &mut NodeRefBaseCommon;
// Comparators
fn same_entry<T: NodeRefBase>(&self, other: &T) -> bool {
Arc::ptr_eq(&self.common().entry, &other.common().entry)
}
fn same_bucket_entry(&self, entry: &Arc<BucketEntry>) -> bool {
Arc::ptr_eq(&self.common().entry, entry)
}
// Implementation-specific operators
fn operate<T, F>(&self, f: F) -> T
where
F: FnOnce(&RoutingTableInner, &BucketEntryInner) -> T;
fn operate_mut<T, F>(&self, f: F) -> T
where
F: FnOnce(&mut RoutingTableInner, &mut BucketEntryInner) -> T;
// Filtering
fn filter_ref(&self) -> Option<&NodeRefFilter> {
self.common().filter.as_ref()
}
fn take_filter(&mut self) -> Option<NodeRefFilter> {
self.common_mut().filter.take()
}
fn set_filter(&mut self, filter: Option<NodeRefFilter>) {
self.common_mut().filter = filter
}
fn set_sequencing(&mut self, sequencing: Sequencing) {
self.common_mut().sequencing = sequencing;
}
fn sequencing(&self) -> Sequencing {
self.common().sequencing
}
fn merge_filter(&mut self, filter: NodeRefFilter) {
let common_mut = self.common_mut();
if let Some(self_filter) = common_mut.filter.take() {
common_mut.filter = Some(self_filter.filtered(&filter));
} else {
common_mut.filter = Some(filter);
}
}
fn is_filter_dead(&self) -> bool {
if let Some(filter) = &self.common().filter {
filter.is_dead()
} else {
false
}
}
fn routing_domain_set(&self) -> RoutingDomainSet {
self.common()
.filter
.as_ref()
.map(|f| f.routing_domain_set)
.unwrap_or(RoutingDomainSet::all())
}
fn dial_info_filter(&self) -> DialInfoFilter {
self.common()
.filter
.as_ref()
.map(|f| f.dial_info_filter.clone())
.unwrap_or(DialInfoFilter::all())
}
fn best_routing_domain(&self) -> Option<RoutingDomain> {
self.operate(|rti, e| {
e.best_routing_domain(
rti,
self.common()
.filter
.as_ref()
.map(|f| f.routing_domain_set)
.unwrap_or(RoutingDomainSet::all()),
)
})
}
// Accessors
fn routing_table(&self) -> RoutingTable {
self.common().routing_table.clone()
}
fn node_ids(&self) -> TypedKeyGroup {
self.operate(|_rti, e| e.node_ids())
}
fn best_node_id(&self) -> TypedKey {
self.operate(|_rti, e| e.best_node_id())
}
fn has_updated_since_last_network_change(&self) -> bool {
self.operate(|_rti, e| e.has_updated_since_last_network_change())
}
fn set_updated_since_last_network_change(&self) {
self.operate_mut(|_rti, e| e.set_updated_since_last_network_change(true));
}
fn update_node_status(&self, routing_domain: RoutingDomain, node_status: NodeStatus) {
self.operate_mut(|_rti, e| {
e.update_node_status(routing_domain, node_status);
});
}
fn envelope_support(&self) -> Vec<u8> {
self.operate(|_rti, e| e.envelope_support())
}
fn add_envelope_version(&self, envelope_version: u8) {
self.operate_mut(|_rti, e| e.add_envelope_version(envelope_version))
}
fn set_envelope_support(&self, envelope_support: Vec<u8>) {
self.operate_mut(|_rti, e| e.set_envelope_support(envelope_support))
}
fn best_envelope_version(&self) -> Option<u8> {
self.operate(|_rti, e| e.best_envelope_version())
}
fn state(&self, cur_ts: Timestamp) -> BucketEntryState {
self.operate(|_rti, e| e.state(cur_ts))
}
fn peer_stats(&self) -> PeerStats {
self.operate(|_rti, e| e.peer_stats().clone())
}
// Per-RoutingDomain accessors
fn make_peer_info(&self, routing_domain: RoutingDomain) -> Option<PeerInfo> {
self.operate(|_rti, e| e.make_peer_info(routing_domain))
}
fn node_info(&self, routing_domain: RoutingDomain) -> Option<NodeInfo> {
self.operate(|_rti, e| e.node_info(routing_domain).cloned())
}
fn signed_node_info_has_valid_signature(&self, routing_domain: RoutingDomain) -> bool {
self.operate(|_rti, e| {
e.signed_node_info(routing_domain)
.map(|sni| sni.has_any_signature())
.unwrap_or(false)
})
}
fn node_info_ts(&self, routing_domain: RoutingDomain) -> Timestamp {
self.operate(|_rti, e| {
e.signed_node_info(routing_domain)
.map(|sni| sni.timestamp())
.unwrap_or(0u64.into())
})
}
fn has_seen_our_node_info_ts(
&self,
routing_domain: RoutingDomain,
our_node_info_ts: Timestamp,
) -> bool {
self.operate(|_rti, e| e.has_seen_our_node_info_ts(routing_domain, our_node_info_ts))
}
fn set_seen_our_node_info_ts(&self, routing_domain: RoutingDomain, seen_ts: Timestamp) {
self.operate_mut(|_rti, e| e.set_seen_our_node_info_ts(routing_domain, seen_ts));
}
fn network_class(&self, routing_domain: RoutingDomain) -> Option<NetworkClass> {
self.operate(|_rt, e| e.node_info(routing_domain).map(|n| n.network_class()))
}
fn outbound_protocols(&self, routing_domain: RoutingDomain) -> Option<ProtocolTypeSet> {
self.operate(|_rt, e| e.node_info(routing_domain).map(|n| n.outbound_protocols()))
}
fn address_types(&self, routing_domain: RoutingDomain) -> Option<AddressTypeSet> {
self.operate(|_rt, e| e.node_info(routing_domain).map(|n| n.address_types()))
}
fn node_info_outbound_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter {
let mut dif = DialInfoFilter::all();
if let Some(outbound_protocols) = self.outbound_protocols(routing_domain) {
dif = dif.with_protocol_type_set(outbound_protocols);
}
if let Some(address_types) = self.address_types(routing_domain) {
dif = dif.with_address_type_set(address_types);
}
dif
}
fn relay(&self, routing_domain: RoutingDomain) -> EyreResult<Option<NodeRef>> {
self.operate_mut(|rti, e| {
let Some(sni) = e.signed_node_info(routing_domain) else {
return Ok(None);
};
let Some(rpi) = sni.relay_peer_info() else {
return Ok(None);
};
// If relay is ourselves, then return None, because we can't relay through ourselves
// and to contact this node we should have had an existing inbound connection
if rti.unlocked_inner.matches_own_node_id(rpi.node_ids()) {
bail!("Can't relay though ourselves");
}
// Register relay node and return noderef
let nr =
rti.register_node_with_peer_info(self.routing_table(), routing_domain, rpi, false)?;
Ok(Some(nr))
})
}
// Filtered accessors
fn first_filtered_dial_info_detail(&self) -> Option<DialInfoDetail> {
let routing_domain_set = self.routing_domain_set();
let dial_info_filter = self.dial_info_filter();
let sequencing = self.common().sequencing;
let (ordered, dial_info_filter) = dial_info_filter.with_sequencing(sequencing);
let sort = if ordered {
Some(DialInfoDetail::ordered_sequencing_sort)
} else {
None
};
if dial_info_filter.is_dead() {
return None;
}
let filter = |did: &DialInfoDetail| did.matches_filter(&dial_info_filter);
self.operate(|_rt, e| {
for routing_domain in routing_domain_set {
if let Some(ni) = e.node_info(routing_domain) {
if let Some(did) = ni.first_filtered_dial_info_detail(sort, filter) {
return Some(did);
}
}
}
None
})
}
fn all_filtered_dial_info_details<F>(&self) -> Vec<DialInfoDetail> {
let routing_domain_set = self.routing_domain_set();
let dial_info_filter = self.dial_info_filter();
let (sort, dial_info_filter) = match self.common().sequencing {
Sequencing::NoPreference => (None, dial_info_filter),
Sequencing::PreferOrdered => (
Some(DialInfoDetail::ordered_sequencing_sort),
dial_info_filter,
),
Sequencing::EnsureOrdered => (
Some(DialInfoDetail::ordered_sequencing_sort),
dial_info_filter.filtered(
&DialInfoFilter::all().with_protocol_type_set(ProtocolType::all_ordered_set()),
),
),
};
let mut out = Vec::new();
self.operate(|_rt, e| {
for routing_domain in routing_domain_set {
if let Some(ni) = e.node_info(routing_domain) {
let filter = |did: &DialInfoDetail| did.matches_filter(&dial_info_filter);
if let Some(did) = ni.first_filtered_dial_info_detail(sort, filter) {
out.push(did);
}
}
}
});
out.remove_duplicates();
out
}
/// Get the most recent 'last connection' to this node
/// Filtered first and then sorted by ordering preference and then by most recent
fn last_connection(&self) -> Option<ConnectionDescriptor> {
self.operate(|rti, e| {
// apply sequencing to filter and get sort
let sequencing = self.common().sequencing;
let filter = self.common().filter.clone().unwrap_or_default();
let (ordered, filter) = filter.with_sequencing(sequencing);
let mut last_connections = e.last_connections(rti, true, filter);
if ordered {
last_connections.sort_by(|a, b| {
ProtocolType::ordered_sequencing_sort(a.0.protocol_type(), b.0.protocol_type())
});
}
last_connections.first().map(|x| x.0)
})
}
fn clear_last_connections(&self) {
self.operate_mut(|_rti, e| e.clear_last_connections())
}
fn set_last_connection(&self, connection_descriptor: ConnectionDescriptor, ts: Timestamp) {
self.operate_mut(|rti, e| {
e.set_last_connection(connection_descriptor, ts);
rti.touch_recent_peer(e.best_node_id(), connection_descriptor);
})
}
fn has_any_dial_info(&self) -> bool {
self.operate(|_rti, e| {
for rtd in RoutingDomain::all() {
if let Some(sni) = e.signed_node_info(rtd) {
if sni.has_any_dial_info() {
return true;
}
}
}
false
})
}
fn stats_question_sent(&self, ts: Timestamp, bytes: Timestamp, expects_answer: bool) {
self.operate_mut(|rti, e| {
rti.transfer_stats_accounting().add_up(bytes);
e.question_sent(ts, bytes, expects_answer);
})
}
fn stats_question_rcvd(&self, ts: Timestamp, bytes: ByteCount) {
self.operate_mut(|rti, e| {
rti.transfer_stats_accounting().add_down(bytes);
e.question_rcvd(ts, bytes);
})
}
fn stats_answer_sent(&self, bytes: ByteCount) {
self.operate_mut(|rti, e| {
rti.transfer_stats_accounting().add_up(bytes);
e.answer_sent(bytes);
})
}
fn stats_answer_rcvd(&self, send_ts: Timestamp, recv_ts: Timestamp, bytes: ByteCount) {
self.operate_mut(|rti, e| {
rti.transfer_stats_accounting().add_down(bytes);
rti.latency_stats_accounting()
.record_latency(recv_ts.saturating_sub(send_ts));
e.answer_rcvd(send_ts, recv_ts, bytes);
})
}
fn stats_question_lost(&self) {
self.operate_mut(|_rti, e| {
e.question_lost();
})
}
fn stats_failed_to_send(&self, ts: Timestamp, expects_answer: bool) {
self.operate_mut(|_rti, e| {
e.failed_to_send(ts, expects_answer);
})
}
}
////////////////////////////////////////////////////////////////////////////////////
/// Reference to a routing table entry
/// Keeps entry in the routing table until all references are gone
pub struct NodeRef {
common: NodeRefBaseCommon,
}
impl NodeRef {
pub fn new(
routing_table: RoutingTable,
entry: Arc<BucketEntry>,
filter: Option<NodeRefFilter>,
) -> Self {
entry.ref_count.fetch_add(1u32, Ordering::Relaxed);
Self {
common: NodeRefBaseCommon {
routing_table,
entry,
filter,
sequencing: Sequencing::NoPreference,
#[cfg(feature = "tracking")]
track_id: entry.track(),
},
}
}
pub fn filtered_clone(&self, filter: NodeRefFilter) -> Self {
let mut out = self.clone();
out.merge_filter(filter);
out
}
pub fn locked<'a>(&self, rti: &'a RoutingTableInner) -> NodeRefLocked<'a> {
NodeRefLocked::new(rti, self.clone())
}
pub fn locked_mut<'a>(&self, rti: &'a mut RoutingTableInner) -> NodeRefLockedMut<'a> {
NodeRefLockedMut::new(rti, self.clone())
}
}
impl NodeRefBase for NodeRef {
fn common(&self) -> &NodeRefBaseCommon {
&self.common
}
fn common_mut(&mut self) -> &mut NodeRefBaseCommon {
&mut self.common
}
fn operate<T, F>(&self, f: F) -> T
where
F: FnOnce(&RoutingTableInner, &BucketEntryInner) -> T,
{
let inner = &*self.common.routing_table.inner.read();
self.common.entry.with(inner, f)
}
fn operate_mut<T, F>(&self, f: F) -> T
where
F: FnOnce(&mut RoutingTableInner, &mut BucketEntryInner) -> T,
{
let inner = &mut *self.common.routing_table.inner.write();
self.common.entry.with_mut(inner, f)
}
}
impl Clone for NodeRef {
fn clone(&self) -> Self {
self.common
.entry
.ref_count
.fetch_add(1u32, Ordering::Relaxed);
Self {
common: NodeRefBaseCommon {
routing_table: self.common.routing_table.clone(),
entry: self.common.entry.clone(),
filter: self.common.filter.clone(),
sequencing: self.common.sequencing,
#[cfg(feature = "tracking")]
track_id: self.common.entry.write().track(),
},
}
}
}
impl fmt::Display for NodeRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.common.entry.with_inner(|e| e.best_node_id()))
}
}
impl fmt::Debug for NodeRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("NodeRef")
.field("node_ids", &self.common.entry.with_inner(|e| e.node_ids()))
.field("filter", &self.common.filter)
.field("sequencing", &self.common.sequencing)
.finish()
}
}
impl Drop for NodeRef {
fn drop(&mut self) {
#[cfg(feature = "tracking")]
self.common.entry.write().untrack(self.track_id);
// drop the noderef and queue a bucket kick if it was the last one
let new_ref_count = self
.common
.entry
.ref_count
.fetch_sub(1u32, Ordering::Relaxed)
- 1;
if new_ref_count == 0 {
// get node ids with inner unlocked because nothing could be referencing this entry now
// and we don't know when it will get dropped, possibly inside a lock
let node_ids = self.common().entry.with_inner(|e| e.node_ids());
self.common.routing_table.queue_bucket_kicks(node_ids);
}
}
}
////////////////////////////////////////////////////////////////////////////////////
/// Locked reference to a routing table entry
/// For internal use inside the RoutingTable module where you have
/// already locked a RoutingTableInner
/// Keeps entry in the routing table until all references are gone
pub struct NodeRefLocked<'a> {
inner: Mutex<&'a RoutingTableInner>,
nr: NodeRef,
}
impl<'a> NodeRefLocked<'a> {
pub fn new(inner: &'a RoutingTableInner, nr: NodeRef) -> Self {
Self {
inner: Mutex::new(inner),
nr,
}
}
pub fn unlocked(&self) -> NodeRef {
self.nr.clone()
}
}
impl<'a> NodeRefBase for NodeRefLocked<'a> {
fn common(&self) -> &NodeRefBaseCommon {
&self.nr.common
}
fn common_mut(&mut self) -> &mut NodeRefBaseCommon {
&mut self.nr.common
}
fn operate<T, F>(&self, f: F) -> T
where
F: FnOnce(&RoutingTableInner, &BucketEntryInner) -> T,
{
let inner = &*self.inner.lock();
self.nr.common.entry.with(inner, f)
}
fn operate_mut<T, F>(&self, _f: F) -> T
where
F: FnOnce(&mut RoutingTableInner, &mut BucketEntryInner) -> T,
{
panic!("need to locked_mut() for this operation")
}
}
impl<'a> fmt::Display for NodeRefLocked<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.nr)
}
}
impl<'a> fmt::Debug for NodeRefLocked<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("NodeRefLocked")
.field("nr", &self.nr)
.finish()
}
}
////////////////////////////////////////////////////////////////////////////////////
/// Mutable locked reference to a routing table entry
/// For internal use inside the RoutingTable module where you have
/// already locked a RoutingTableInner
/// Keeps entry in the routing table until all references are gone
pub struct NodeRefLockedMut<'a> {
inner: Mutex<&'a mut RoutingTableInner>,
nr: NodeRef,
}
impl<'a> NodeRefLockedMut<'a> {
pub fn new(inner: &'a mut RoutingTableInner, nr: NodeRef) -> Self {
Self {
inner: Mutex::new(inner),
nr,
}
}
pub fn unlocked(&self) -> NodeRef {
self.nr.clone()
}
}
impl<'a> NodeRefBase for NodeRefLockedMut<'a> {
fn common(&self) -> &NodeRefBaseCommon {
&self.nr.common
}
fn common_mut(&mut self) -> &mut NodeRefBaseCommon {
&mut self.nr.common
}
fn operate<T, F>(&self, f: F) -> T
where
F: FnOnce(&RoutingTableInner, &BucketEntryInner) -> T,
{
let inner = &*self.inner.lock();
self.nr.common.entry.with(inner, f)
}
fn operate_mut<T, F>(&self, f: F) -> T
where
F: FnOnce(&mut RoutingTableInner, &mut BucketEntryInner) -> T,
{
let inner = &mut *self.inner.lock();
self.nr.common.entry.with_mut(inner, f)
}
}
impl<'a> fmt::Display for NodeRefLockedMut<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.nr)
}
}
impl<'a> fmt::Debug for NodeRefLockedMut<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("NodeRefLockedMut")
.field("nr", &self.nr)
.finish()
}
}