veilid/veilid-core/src/routing_table/mod.rs
2023-06-15 20:22:54 -04:00

1216 lines
43 KiB
Rust

mod bucket;
mod bucket_entry;
mod debug;
mod find_peers;
mod node_ref;
mod node_ref_filter;
mod privacy;
mod route_spec_store;
mod routing_domain_editor;
mod routing_domains;
mod routing_table_inner;
mod stats_accounting;
mod tasks;
mod types;
pub mod tests;
use super::*;
use crate::crypto::*;
use crate::network_manager::*;
use crate::rpc_processor::*;
use bucket::*;
use hashlink::LruCache;
pub use bucket_entry::*;
pub use debug::*;
pub use find_peers::*;
pub use node_ref::*;
pub use node_ref_filter::*;
pub use privacy::*;
pub use route_spec_store::*;
pub use routing_domain_editor::*;
pub use routing_domains::*;
pub use routing_table_inner::*;
pub use stats_accounting::*;
pub use types::*;
//////////////////////////////////////////////////////////////////////////
/// How frequently we tick the relay management routine
pub const RELAY_MANAGEMENT_INTERVAL_SECS: u32 = 1;
/// How frequently we tick the private route management routine
pub const PRIVATE_ROUTE_MANAGEMENT_INTERVAL_SECS: u32 = 1;
// Connectionless protocols like UDP are dependent on a NAT translation timeout
// We should ping them with some frequency and 30 seconds is typical timeout
pub const CONNECTIONLESS_TIMEOUT_SECS: u32 = 29;
pub type LowLevelProtocolPorts = BTreeSet<(LowLevelProtocolType, AddressType, u16)>;
pub type ProtocolToPortMapping = BTreeMap<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>;
#[derive(Clone, Debug)]
pub struct LowLevelPortInfo {
pub low_level_protocol_ports: LowLevelProtocolPorts,
pub protocol_to_port: ProtocolToPortMapping,
}
pub type RoutingTableEntryFilter<'t> =
Box<dyn FnMut(&RoutingTableInner, Option<Arc<BucketEntry>>) -> bool + Send + 't>;
pub type SerializedBuckets = Vec<Vec<u8>>;
pub type SerializedBucketMap = BTreeMap<CryptoKind, SerializedBuckets>;
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct RoutingTableHealth {
/// Number of reliable (responsive) entries in the routing table
pub reliable_entry_count: usize,
/// Number of unreliable (occasionally unresponsive) entries in the routing table
pub unreliable_entry_count: usize,
/// Number of dead (always unresponsive) entries in the routing table
pub dead_entry_count: usize,
/// If PublicInternet network class is valid yet
pub public_internet_ready: bool,
/// If LocalNetwork network class is valid yet
pub local_network_ready: bool,
}
pub type BucketIndex = (CryptoKind, usize);
pub struct RoutingTableUnlockedInner {
// Accessors
config: VeilidConfig,
network_manager: NetworkManager,
/// The current node's public DHT keys
node_id: TypedKeySet,
/// The current node's public DHT secrets
node_id_secret: TypedSecretSet,
/// Buckets to kick on our next kick task
kick_queue: Mutex<BTreeSet<BucketIndex>>,
/// Background process for computing statistics
rolling_transfers_task: TickTask<EyreReport>,
/// Background process to purge dead routing table entries when necessary
kick_buckets_task: TickTask<EyreReport>,
/// Background process to get our initial routing table
bootstrap_task: TickTask<EyreReport>,
/// Background process to ensure we have enough nodes in our routing table
peer_minimum_refresh_task: TickTask<EyreReport>,
/// Background process to check nodes to see if they are still alive and for reliability
ping_validator_task: TickTask<EyreReport>,
/// Background process to keep relays up
relay_management_task: TickTask<EyreReport>,
/// Background process to keep private routes up
private_route_management_task: TickTask<EyreReport>,
}
impl RoutingTableUnlockedInner {
pub fn network_manager(&self) -> NetworkManager {
self.network_manager.clone()
}
pub fn crypto(&self) -> Crypto {
self.network_manager().crypto()
}
pub fn rpc_processor(&self) -> RPCProcessor {
self.network_manager().rpc_processor()
}
pub fn update_callback(&self) -> UpdateCallback {
self.network_manager().update_callback()
}
pub fn with_config<F, R>(&self, f: F) -> R
where
F: FnOnce(&VeilidConfigInner) -> R,
{
f(&*self.config.get())
}
pub fn node_id(&self, kind: CryptoKind) -> TypedKey {
self.node_id.get(kind).unwrap()
}
pub fn node_id_secret_key(&self, kind: CryptoKind) -> SecretKey {
self.node_id_secret.get(kind).unwrap().value
}
pub fn node_ids(&self) -> TypedKeySet {
self.node_id.clone()
}
pub fn node_id_typed_key_pairs(&self) -> Vec<TypedKeyPair> {
let mut tkps = Vec::new();
for ck in VALID_CRYPTO_KINDS {
tkps.push(TypedKeyPair::new(
ck,
KeyPair::new(self.node_id(ck).value, self.node_id_secret_key(ck)),
));
}
tkps
}
pub fn matches_own_node_id(&self, node_ids: &[TypedKey]) -> bool {
for ni in node_ids {
if let Some(v) = self.node_id.get(ni.kind) {
if v.value == ni.value {
return true;
}
}
}
false
}
pub fn matches_own_node_id_key(&self, node_id_key: &PublicKey) -> bool {
for tk in self.node_id.iter() {
if tk.value == *node_id_key {
return true;
}
}
false
}
pub fn calculate_bucket_index(&self, node_id: &TypedKey) -> BucketIndex {
let crypto = self.crypto();
let self_node_id_key = self.node_id(node_id.kind).value;
let vcrypto = crypto.get(node_id.kind).unwrap();
(
node_id.kind,
vcrypto
.distance(&node_id.value, &self_node_id_key)
.first_nonzero_bit()
.unwrap(),
)
}
}
#[derive(Clone)]
pub struct RoutingTable {
inner: Arc<RwLock<RoutingTableInner>>,
unlocked_inner: Arc<RoutingTableUnlockedInner>,
}
impl RoutingTable {
fn new_unlocked_inner(
config: VeilidConfig,
network_manager: NetworkManager,
) -> RoutingTableUnlockedInner {
let c = config.get();
RoutingTableUnlockedInner {
config: config.clone(),
network_manager,
node_id: c.network.routing_table.node_id.clone(),
node_id_secret: c.network.routing_table.node_id_secret.clone(),
kick_queue: Mutex::new(BTreeSet::default()),
rolling_transfers_task: TickTask::new(ROLLING_TRANSFERS_INTERVAL_SECS),
kick_buckets_task: TickTask::new(1),
bootstrap_task: TickTask::new(1),
peer_minimum_refresh_task: TickTask::new_ms(c.network.dht.min_peer_refresh_time_ms),
ping_validator_task: TickTask::new(1),
relay_management_task: TickTask::new(RELAY_MANAGEMENT_INTERVAL_SECS),
private_route_management_task: TickTask::new(PRIVATE_ROUTE_MANAGEMENT_INTERVAL_SECS),
}
}
pub fn new(network_manager: NetworkManager) -> Self {
let config = network_manager.config();
let unlocked_inner = Arc::new(Self::new_unlocked_inner(config, network_manager));
let inner = Arc::new(RwLock::new(RoutingTableInner::new(unlocked_inner.clone())));
let this = Self {
inner,
unlocked_inner,
};
this.setup_tasks();
this
}
/////////////////////////////////////
/// Initialization
/// Called to initialize the routing table after it is created
pub async fn init(&self) -> EyreResult<()> {
debug!("starting routing table init");
// Set up routing buckets
{
let mut inner = self.inner.write();
inner.init_buckets();
}
// Load bucket entries from table db if possible
debug!("loading routing table entries");
if let Err(e) = self.load_buckets().await {
log_rtab!(debug "Error loading buckets from storage: {:#?}. Resetting.", e);
let mut inner = self.inner.write();
inner.init_buckets();
}
// Set up routespecstore
debug!("starting route spec store init");
let route_spec_store = match RouteSpecStore::load(self.clone()).await {
Ok(v) => v,
Err(e) => {
log_rtab!(debug "Error loading route spec store: {:#?}. Resetting.", e);
RouteSpecStore::new(self.clone())
}
};
debug!("finished route spec store init");
{
let mut inner = self.inner.write();
inner.route_spec_store = Some(route_spec_store);
}
debug!("finished routing table init");
Ok(())
}
/// Called to shut down the routing table
pub async fn terminate(&self) {
debug!("starting routing table terminate");
// Stop tasks
self.cancel_tasks().await;
// Load bucket entries from table db if possible
debug!("saving routing table entries");
if let Err(e) = self.save_buckets().await {
error!("failed to save routing table entries: {}", e);
}
debug!("saving route spec store");
let rss = {
let mut inner = self.inner.write();
inner.route_spec_store.take()
};
if let Some(rss) = rss {
if let Err(e) = rss.save().await {
error!("couldn't save route spec store: {}", e);
}
}
debug!("shutting down routing table");
let mut inner = self.inner.write();
*inner = RoutingTableInner::new(self.unlocked_inner.clone());
debug!("finished routing table terminate");
}
/// Serialize the routing table.
fn serialized_buckets(&self) -> EyreResult<(SerializedBucketMap, SerializedBuckets)> {
// Since entries are shared by multiple buckets per cryptokind
// we need to get the list of all unique entries when serializing
let mut all_entries: Vec<Arc<BucketEntry>> = Vec::new();
// Serialize all buckets and get map of entries
let mut serialized_bucket_map: SerializedBucketMap = BTreeMap::new();
{
let mut entry_map: HashMap<*const BucketEntry, u32> = HashMap::new();
let inner = &*self.inner.read();
for ck in VALID_CRYPTO_KINDS {
let buckets = inner.buckets.get(&ck).unwrap();
let mut serialized_buckets = Vec::new();
for bucket in buckets.iter() {
serialized_buckets.push(bucket.save_bucket(&mut all_entries, &mut entry_map)?)
}
serialized_bucket_map.insert(ck, serialized_buckets);
}
}
// Serialize all the entries
let mut all_entry_bytes = Vec::with_capacity(all_entries.len());
for entry in all_entries {
// Serialize entry
let entry_bytes = entry.with_inner(|e| to_rkyv(e))?;
all_entry_bytes.push(entry_bytes);
}
Ok((serialized_bucket_map, all_entry_bytes))
}
/// Write the serialized routing table to the table store.
async fn save_buckets(&self) -> EyreResult<()> {
let (serialized_bucket_map, all_entry_bytes) = self.serialized_buckets()?;
let table_store = self.unlocked_inner.network_manager().table_store();
let tdb = table_store.open("routing_table", 1).await?;
let dbx = tdb.transact();
if let Err(e) = dbx.store_rkyv(0, b"serialized_bucket_map", &serialized_bucket_map) {
dbx.rollback();
return Err(e.into());
}
if let Err(e) = dbx.store_rkyv(0, b"all_entry_bytes", &all_entry_bytes) {
dbx.rollback();
return Err(e.into());
}
dbx.commit().await?;
Ok(())
}
/// Deserialize routing table from table store
async fn load_buckets(&self) -> EyreResult<()> {
// Deserialize bucket map and all entries from the table store
let tstore = self.unlocked_inner.network_manager().table_store();
let tdb = tstore.open("routing_table", 1).await?;
let Some(serialized_bucket_map): Option<SerializedBucketMap> = tdb.load_rkyv(0, b"serialized_bucket_map").await? else {
log_rtab!(debug "no bucket map in saved routing table");
return Ok(());
};
let Some(all_entry_bytes): Option<SerializedBuckets> = tdb.load_rkyv(0, b"all_entry_bytes").await? else {
log_rtab!(debug "no all_entry_bytes in saved routing table");
return Ok(());
};
// Reconstruct all entries
let inner = &mut *self.inner.write();
self.populate_routing_table(inner, serialized_bucket_map, all_entry_bytes)?;
Ok(())
}
/// Write the deserialized table store data to the routing table.
pub fn populate_routing_table(
&self,
inner: &mut RoutingTableInner,
serialized_bucket_map: SerializedBucketMap,
all_entry_bytes: SerializedBuckets,
) -> EyreResult<()> {
let mut all_entries: Vec<Arc<BucketEntry>> = Vec::with_capacity(all_entry_bytes.len());
for entry_bytes in all_entry_bytes {
let entryinner =
from_rkyv(entry_bytes).wrap_err("failed to deserialize bucket entry")?;
let entry = Arc::new(BucketEntry::new_with_inner(entryinner));
// Keep strong reference in table
all_entries.push(entry.clone());
// Keep all entries in weak table too
inner.all_entries.insert(entry);
}
// Validate serialized bucket map
for (k, v) in &serialized_bucket_map {
if !VALID_CRYPTO_KINDS.contains(k) {
warn!("crypto kind is not valid, not loading routing table");
return Ok(());
}
if v.len() != PUBLIC_KEY_LENGTH * 8 {
warn!("bucket count is different, not loading routing table");
return Ok(());
}
}
// Recreate buckets
for (k, v) in serialized_bucket_map {
let buckets = inner.buckets.get_mut(&k).unwrap();
for n in 0..v.len() {
buckets[n].load_bucket(v[n].clone(), &all_entries)?;
}
}
Ok(())
}
/// Set up the local network routing domain with our local routing table configuration
pub fn configure_local_network_routing_domain(&self, local_networks: Vec<(IpAddr, IpAddr)>) {
log_net!(debug "configure_local_network_routing_domain: {:#?}", local_networks);
self.inner
.write()
.configure_local_network_routing_domain(local_networks);
}
/////////////////////////////////////
/// Locked operations
pub fn routing_domain_for_address(&self, address: Address) -> Option<RoutingDomain> {
self.inner.read().routing_domain_for_address(address)
}
pub fn route_spec_store(&self) -> RouteSpecStore {
self.inner.read().route_spec_store.as_ref().unwrap().clone()
}
pub fn relay_node(&self, domain: RoutingDomain) -> Option<NodeRef> {
self.inner.read().relay_node(domain)
}
pub fn has_dial_info(&self, domain: RoutingDomain) -> bool {
self.inner.read().has_dial_info(domain)
}
pub fn dial_info_details(&self, domain: RoutingDomain) -> Vec<DialInfoDetail> {
self.inner.read().dial_info_details(domain)
}
pub fn first_filtered_dial_info_detail(
&self,
routing_domain_set: RoutingDomainSet,
filter: &DialInfoFilter,
) -> Option<DialInfoDetail> {
self.inner
.read()
.first_filtered_dial_info_detail(routing_domain_set, filter)
}
pub fn all_filtered_dial_info_details(
&self,
routing_domain_set: RoutingDomainSet,
filter: &DialInfoFilter,
) -> Vec<DialInfoDetail> {
self.inner
.read()
.all_filtered_dial_info_details(routing_domain_set, filter)
}
pub fn ensure_dial_info_is_valid(&self, domain: RoutingDomain, dial_info: &DialInfo) -> bool {
self.inner
.read()
.ensure_dial_info_is_valid(domain, dial_info)
}
pub fn node_info_is_valid_in_routing_domain(
&self,
routing_domain: RoutingDomain,
node_info: &NodeInfo,
) -> bool {
self.inner
.read()
.node_info_is_valid_in_routing_domain(routing_domain, node_info)
}
pub fn signed_node_info_is_valid_in_routing_domain(
&self,
routing_domain: RoutingDomain,
signed_node_info: &SignedNodeInfo,
) -> bool {
self.inner
.read()
.signed_node_info_is_valid_in_routing_domain(routing_domain, signed_node_info)
}
/// Look up the best way for two nodes to reach each other over a specific routing domain
#[instrument(level = "trace", skip(self), ret)]
pub fn get_contact_method(
&self,
routing_domain: RoutingDomain,
peer_a: &PeerInfo,
peer_b: &PeerInfo,
dial_info_filter: DialInfoFilter,
sequencing: Sequencing,
) -> ContactMethod {
self.inner.read().get_contact_method(
routing_domain,
peer_a,
peer_b,
dial_info_filter,
sequencing,
)
}
#[instrument(level = "debug", skip(self))]
pub fn edit_routing_domain(&self, domain: RoutingDomain) -> RoutingDomainEditor {
RoutingDomainEditor::new(self.clone(), domain)
}
/// Return a copy of our node's peerinfo
pub fn get_own_peer_info(&self, routing_domain: RoutingDomain) -> Option<PeerInfo> {
self.inner.read().get_own_peer_info(routing_domain)
}
/// Return the best effort copy of our node's peerinfo
/// This may be invalid and should not be passed to other nodes,
/// but may be used for contact method calculation
pub fn get_best_effort_own_peer_info(&self, routing_domain: RoutingDomain) -> PeerInfo {
self.inner
.read()
.get_best_effort_own_peer_info(routing_domain)
}
/// If we have a valid network class in this routing domain, then our 'NodeInfo' is valid
/// If this is true, we can get our final peer info, otherwise we only have a 'best effort' peer info
pub fn has_valid_own_node_info(&self, routing_domain: RoutingDomain) -> bool {
self.inner.read().has_valid_own_node_info(routing_domain)
}
/// Return our current node info timestamp
pub fn get_own_node_info_ts(&self, routing_domain: RoutingDomain) -> Option<Timestamp> {
self.inner.read().get_own_node_info_ts(routing_domain)
}
/// Return the domain's currently registered network class
pub fn get_network_class(&self, routing_domain: RoutingDomain) -> Option<NetworkClass> {
self.inner.read().get_network_class(routing_domain)
}
/// Return the domain's filter for what we can receivein the form of a dial info filter
pub fn get_inbound_dial_info_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter {
self.inner
.read()
.get_inbound_dial_info_filter(routing_domain)
}
/// Return the domain's filter for what we can receive in the form of a node ref filter
pub fn get_inbound_node_ref_filter(&self, routing_domain: RoutingDomain) -> NodeRefFilter {
self.inner
.read()
.get_inbound_node_ref_filter(routing_domain)
}
/// Return the domain's filter for what we can send out in the form of a dial info filter
pub fn get_outbound_dial_info_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter {
self.inner
.read()
.get_outbound_dial_info_filter(routing_domain)
}
/// Return the domain's filter for what we can receive in the form of a node ref filter
pub fn get_outbound_node_ref_filter(&self, routing_domain: RoutingDomain) -> NodeRefFilter {
self.inner
.read()
.get_outbound_node_ref_filter(routing_domain)
}
/// Attempt to empty the routing table
/// May not empty buckets completely if there are existing node_refs
pub fn purge_buckets(&self) {
self.inner.write().purge_buckets();
}
/// Attempt to remove last_connections from entries
pub fn purge_last_connections(&self) {
self.inner.write().purge_last_connections();
}
pub fn get_entry_count(
&self,
routing_domain_set: RoutingDomainSet,
min_state: BucketEntryState,
crypto_kinds: &[CryptoKind],
) -> usize {
self.inner
.read()
.get_entry_count(routing_domain_set, min_state, crypto_kinds)
}
pub fn get_entry_count_per_crypto_kind(
&self,
routing_domain_set: RoutingDomainSet,
min_state: BucketEntryState,
) -> BTreeMap<CryptoKind, usize> {
self.inner
.read()
.get_entry_count_per_crypto_kind(routing_domain_set, min_state)
}
pub fn get_nodes_needing_ping(
&self,
routing_domain: RoutingDomain,
cur_ts: Timestamp,
) -> Vec<NodeRef> {
self.inner
.read()
.get_nodes_needing_ping(self.clone(), routing_domain, cur_ts)
}
pub fn get_all_nodes(&self, cur_ts: Timestamp) -> Vec<NodeRef> {
let inner = self.inner.read();
inner.get_all_nodes(self.clone(), cur_ts)
}
fn queue_bucket_kicks(&self, node_ids: TypedKeySet) {
for node_id in node_ids.iter() {
// Skip node ids we didn't add to buckets
if !VALID_CRYPTO_KINDS.contains(&node_id.kind) {
continue;
}
// Put it in the kick queue
let x = self.unlocked_inner.calculate_bucket_index(node_id);
self.unlocked_inner.kick_queue.lock().insert(x);
}
}
/// Resolve an existing routing table entry using any crypto kind and return a reference to it
pub fn lookup_any_node_ref(&self, node_id_key: PublicKey) -> EyreResult<Option<NodeRef>> {
self.inner
.read()
.lookup_any_node_ref(self.clone(), node_id_key)
}
/// Resolve an existing routing table entry and return a reference to it
pub fn lookup_node_ref(&self, node_id: TypedKey) -> EyreResult<Option<NodeRef>> {
self.inner.read().lookup_node_ref(self.clone(), node_id)
}
/// Resolve an existing routing table entry and return a filtered reference to it
pub fn lookup_and_filter_noderef(
&self,
node_id: TypedKey,
routing_domain_set: RoutingDomainSet,
dial_info_filter: DialInfoFilter,
) -> EyreResult<Option<NodeRef>> {
self.inner.read().lookup_and_filter_noderef(
self.clone(),
node_id,
routing_domain_set,
dial_info_filter,
)
}
/// Shortcut function to add a node to our routing table if it doesn't exist
/// and add the dial info we have for it. Returns a noderef filtered to
/// the routing domain in which this node was registered for convenience.
pub fn register_node_with_peer_info(
&self,
routing_domain: RoutingDomain,
peer_info: PeerInfo,
allow_invalid: bool,
) -> EyreResult<NodeRef> {
self.inner.write().register_node_with_peer_info(
self.clone(),
routing_domain,
peer_info,
allow_invalid,
)
}
/// Shortcut function to add a node to our routing table if it doesn't exist
/// and add the last peer address we have for it, since that's pretty common
pub fn register_node_with_existing_connection(
&self,
node_id: TypedKey,
descriptor: ConnectionDescriptor,
timestamp: Timestamp,
) -> EyreResult<NodeRef> {
self.inner.write().register_node_with_existing_connection(
self.clone(),
node_id,
descriptor,
timestamp,
)
}
//////////////////////////////////////////////////////////////////////
// Routing Table Health Metrics
pub fn get_routing_table_health(&self) -> RoutingTableHealth {
self.inner.read().get_routing_table_health()
}
pub fn get_recent_peers(&self) -> Vec<(TypedKey, RecentPeersEntry)> {
let mut recent_peers = Vec::new();
let mut dead_peers = Vec::new();
let mut out = Vec::new();
// collect all recent peers
{
let inner = self.inner.read();
for (k, _v) in &inner.recent_peers {
recent_peers.push(*k);
}
}
// look up each node and make sure the connection is still live
// (uses same logic as send_data, ensuring last_connection works for UDP)
for e in &recent_peers {
let mut dead = true;
if let Ok(Some(nr)) = self.lookup_node_ref(*e) {
if let Some(last_connection) = nr.last_connection() {
out.push((*e, RecentPeersEntry { last_connection }));
dead = false;
}
}
if dead {
dead_peers.push(e);
}
}
// purge dead recent peers
{
let mut inner = self.inner.write();
for d in dead_peers {
inner.recent_peers.remove(d);
}
}
out
}
pub fn touch_recent_peer(&self, node_id: TypedKey, last_connection: ConnectionDescriptor) {
self.inner
.write()
.touch_recent_peer(node_id, last_connection)
}
//////////////////////////////////////////////////////////////////////
// Find Nodes
/// Build a map of protocols to low level ports
/// This way we can get the set of protocols required to keep our NAT mapping alive for keepalive pings
/// Only one protocol per low level protocol/port combination is required
/// For example, if WS/WSS and TCP protocols are on the same low-level TCP port, only TCP keepalives will be required
/// and we do not need to do WS/WSS keepalive as well. If they are on different ports, then we will need WS/WSS keepalives too.
pub fn get_low_level_port_info(&self) -> LowLevelPortInfo {
let mut low_level_protocol_ports =
BTreeSet::<(LowLevelProtocolType, AddressType, u16)>::new();
let mut protocol_to_port =
BTreeMap::<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>::new();
let our_dids = self.all_filtered_dial_info_details(
RoutingDomain::PublicInternet.into(),
&DialInfoFilter::all(),
);
for did in our_dids {
low_level_protocol_ports.insert((
did.dial_info.protocol_type().low_level_protocol_type(),
did.dial_info.address_type(),
did.dial_info.socket_address().port(),
));
protocol_to_port.insert(
(did.dial_info.protocol_type(), did.dial_info.address_type()),
(
did.dial_info.protocol_type().low_level_protocol_type(),
did.dial_info.socket_address().port(),
),
);
}
LowLevelPortInfo {
low_level_protocol_ports,
protocol_to_port,
}
}
/// Makes a filter that finds nodes with a matching inbound dialinfo
pub fn make_inbound_dial_info_entry_filter<'a>(
routing_domain: RoutingDomain,
dial_info_filter: DialInfoFilter,
) -> RoutingTableEntryFilter<'a> {
// does it have matching public dial info?
Box::new(move |rti, e| {
if let Some(e) = e {
e.with(rti, |_rti, e| {
if let Some(ni) = e.node_info(routing_domain) {
if ni
.first_filtered_dial_info_detail(DialInfoDetail::NO_SORT, |did| {
did.matches_filter(&dial_info_filter)
})
.is_some()
{
return true;
}
}
false
})
} else {
rti.first_filtered_dial_info_detail(routing_domain.into(), &dial_info_filter)
.is_some()
}
})
}
/// Makes a filter that finds nodes capable of dialing a particular outbound dialinfo
pub fn make_outbound_dial_info_entry_filter<'a>(
routing_domain: RoutingDomain,
dial_info: DialInfo,
) -> RoutingTableEntryFilter<'a> {
// does the node's outbound capabilities match the dialinfo?
Box::new(move |rti, e| {
if let Some(e) = e {
e.with(rti, |_rti, e| {
if let Some(ni) = e.node_info(routing_domain) {
let dif = DialInfoFilter::all()
.with_protocol_type_set(ni.outbound_protocols())
.with_address_type_set(ni.address_types());
if dial_info.matches_filter(&dif) {
return true;
}
}
false
})
} else {
let dif = rti.get_outbound_dial_info_filter(routing_domain);
dial_info.matches_filter(&dif)
}
})
}
pub fn find_fast_public_nodes_filtered(
&self,
node_count: usize,
filters: VecDeque<RoutingTableEntryFilter>,
) -> Vec<NodeRef> {
self.inner
.read()
.find_fast_public_nodes_filtered(self.clone(), node_count, filters)
}
/// Retrieve up to N of each type of protocol capable nodes for a single crypto kind
fn find_bootstrap_nodes_filtered_per_crypto_kind(
&self,
crypto_kind: CryptoKind,
max_per_type: usize,
) -> Vec<NodeRef> {
let protocol_types = vec![
ProtocolType::UDP,
ProtocolType::TCP,
ProtocolType::WS,
ProtocolType::WSS,
];
let protocol_types_len = protocol_types.len();
let mut nodes_proto_v4 = vec![0usize, 0usize, 0usize, 0usize];
let mut nodes_proto_v6 = vec![0usize, 0usize, 0usize, 0usize];
let filter = Box::new(
move |rti: &RoutingTableInner, entry: Option<Arc<BucketEntry>>| {
let entry = entry.unwrap();
entry.with(rti, |_rti, e| {
// skip nodes on our local network here
if e.has_node_info(RoutingDomain::LocalNetwork.into()) {
return false;
}
// Ensure crypto kind is supported
if !e.crypto_kinds().contains(&crypto_kind) {
return false;
}
// does it have some dial info we need?
let filter = |n: &NodeInfo| {
let mut keep = false;
for did in n.dial_info_detail_list() {
if matches!(did.dial_info.address_type(), AddressType::IPV4) {
for (n, protocol_type) in protocol_types.iter().enumerate() {
if nodes_proto_v4[n] < max_per_type
&& did.dial_info.protocol_type() == *protocol_type
{
nodes_proto_v4[n] += 1;
keep = true;
}
}
} else if matches!(did.dial_info.address_type(), AddressType::IPV6) {
for (n, protocol_type) in protocol_types.iter().enumerate() {
if nodes_proto_v6[n] < max_per_type
&& did.dial_info.protocol_type() == *protocol_type
{
nodes_proto_v6[n] += 1;
keep = true;
}
}
}
}
keep
};
e.node_info(RoutingDomain::PublicInternet)
.map(filter)
.unwrap_or(false)
})
},
) as RoutingTableEntryFilter;
let filters = VecDeque::from([filter]);
self.find_fastest_nodes(
protocol_types_len * 2 * max_per_type,
filters,
|_rti, entry: Option<Arc<BucketEntry>>| {
NodeRef::new(self.clone(), entry.unwrap().clone(), None)
},
)
}
/// Retrieve up to N of each type of protocol capable nodes for all crypto kinds
pub fn find_bootstrap_nodes_filtered(&self, max_per_type: usize) -> Vec<NodeRef> {
let mut out =
self.find_bootstrap_nodes_filtered_per_crypto_kind(VALID_CRYPTO_KINDS[0], max_per_type);
// Merge list of nodes so we don't have duplicates
for crypto_kind in &VALID_CRYPTO_KINDS[1..] {
let nrs =
self.find_bootstrap_nodes_filtered_per_crypto_kind(*crypto_kind, max_per_type);
'nrloop: for nr in nrs {
for nro in &out {
if nro.same_entry(&nr) {
continue 'nrloop;
}
}
out.push(nr);
}
}
out
}
pub fn find_peers_with_sort_and_filter<C, T, O>(
&self,
node_count: usize,
cur_ts: Timestamp,
filters: VecDeque<RoutingTableEntryFilter>,
compare: C,
transform: T,
) -> Vec<O>
where
C: for<'a, 'b> FnMut(
&'a RoutingTableInner,
&'b Option<Arc<BucketEntry>>,
&'b Option<Arc<BucketEntry>>,
) -> core::cmp::Ordering,
T: for<'r> FnMut(&'r RoutingTableInner, Option<Arc<BucketEntry>>) -> O + Send,
{
self.inner
.read()
.find_peers_with_sort_and_filter(node_count, cur_ts, filters, compare, transform)
}
pub fn find_fastest_nodes<'a, T, O>(
&self,
node_count: usize,
filters: VecDeque<RoutingTableEntryFilter>,
transform: T,
) -> Vec<O>
where
T: for<'r> FnMut(&'r RoutingTableInner, Option<Arc<BucketEntry>>) -> O + Send,
{
self.inner
.read()
.find_fastest_nodes(node_count, filters, transform)
}
pub fn find_closest_nodes<'a, T, O>(
&self,
node_count: usize,
node_id: TypedKey,
filters: VecDeque<RoutingTableEntryFilter>,
transform: T,
) -> Vec<O>
where
T: for<'r> FnMut(&'r RoutingTableInner, Option<Arc<BucketEntry>>) -> O + Send,
{
self.inner
.read()
.find_closest_nodes(node_count, node_id, filters, transform)
}
pub fn sort_and_clean_closest_noderefs(
&self,
node_id: TypedKey,
closest_nodes: &mut Vec<NodeRef>,
) {
self.inner
.read()
.sort_and_clean_closest_noderefs(node_id, closest_nodes)
}
#[instrument(level = "trace", skip(self), ret)]
pub fn register_find_node_answer(
&self,
crypto_kind: CryptoKind,
peers: Vec<PeerInfo>,
) -> Vec<NodeRef> {
// Register nodes we'd found
let mut out = Vec::<NodeRef>::with_capacity(peers.len());
for p in peers {
// Ensure we're getting back nodes we asked for
if !p.node_ids().kinds().contains(&crypto_kind) {
continue;
}
// Don't register our own node
if self.matches_own_node_id(p.node_ids()) {
continue;
}
// Register the node if it's new
match self.register_node_with_peer_info(RoutingDomain::PublicInternet, p, false) {
Ok(nr) => out.push(nr),
Err(e) => {
log_rtab!(debug "failed to register node with peer info from find node answer: {}", e);
}
}
}
out
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_node(
&self,
node_ref: NodeRef,
node_id: TypedKey,
) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let rpc_processor = self.rpc_processor();
let res = network_result_try!(
rpc_processor
.clone()
.rpc_call_find_node(Destination::direct(node_ref), node_id)
.await?
);
// register nodes we'd found
Ok(NetworkResult::value(
self.register_find_node_answer(node_id.kind, res.answer),
))
}
/// Ask a remote node to list the nodes it has around the current node
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_self(
&self,
crypto_kind: CryptoKind,
node_ref: NodeRef,
) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let self_node_id = self.node_id(crypto_kind);
self.find_node(node_ref, self_node_id).await
}
/// Ask a remote node to list the nodes it has around itself
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_target(
&self,
crypto_kind: CryptoKind,
node_ref: NodeRef,
) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let Some(target_node_id) = node_ref.node_ids().get(crypto_kind) else {
bail!("no target node ids for this crypto kind");
};
self.find_node(node_ref, target_node_id).await
}
#[instrument(level = "trace", skip(self))]
pub async fn reverse_find_node(&self, crypto_kind: CryptoKind, node_ref: NodeRef, wide: bool) {
// Ask node to 'find node' on own node so we can get some more nodes near ourselves
// and then contact those nodes to inform -them- that we exist
// Ask node for nodes closest to our own node
let closest_nodes = network_result_value_or_log!(match self.find_self(crypto_kind, node_ref.clone()).await {
Err(e) => {
log_rtab!(error
"find_self failed for {:?}: {:?}",
&node_ref, e
);
return;
}
Ok(v) => v,
} => {
return;
});
// Ask each node near us to find us as well
if wide {
for closest_nr in closest_nodes {
network_result_value_or_log!(match self.find_self(crypto_kind, closest_nr.clone()).await {
Err(e) => {
log_rtab!(error
"find_self failed for {:?}: {:?}",
&closest_nr, e
);
continue;
}
Ok(v) => v,
} => {
// Do nothing with non-values
continue;
});
}
}
}
pub fn make_public_internet_relay_node_filter(&self) -> impl Fn(&BucketEntryInner) -> bool {
// Get all our outbound protocol/address types
let outbound_dif = self.get_outbound_dial_info_filter(RoutingDomain::PublicInternet);
let mapped_port_info = self.get_low_level_port_info();
move |e: &BucketEntryInner| {
// Ensure this node is not on the local network
if e.has_node_info(RoutingDomain::LocalNetwork.into()) {
return false;
}
// Disqualify nodes that don't cover all our inbound ports for tcp and udp
// as we need to be able to use the relay for keepalives for all nat mappings
let mut low_level_protocol_ports = mapped_port_info.low_level_protocol_ports.clone();
let can_serve_as_relay = e
.node_info(RoutingDomain::PublicInternet)
.map(|n| {
let dids = n.all_filtered_dial_info_details(
Some(DialInfoDetail::ordered_sequencing_sort), // By default, choose connection-oriented protocol for relay
|did| did.matches_filter(&outbound_dif),
);
for did in &dids {
let pt = did.dial_info.protocol_type();
let at = did.dial_info.address_type();
if let Some((llpt, port)) = mapped_port_info.protocol_to_port.get(&(pt, at))
{
low_level_protocol_ports.remove(&(*llpt, at, *port));
}
}
low_level_protocol_ports.is_empty()
})
.unwrap_or(false);
if !can_serve_as_relay {
return false;
}
true
}
}
#[instrument(level = "trace", skip(self), ret)]
pub fn find_inbound_relay(
&self,
routing_domain: RoutingDomain,
cur_ts: Timestamp,
) -> Option<NodeRef> {
// Get relay filter function
let relay_node_filter = match routing_domain {
RoutingDomain::PublicInternet => self.make_public_internet_relay_node_filter(),
RoutingDomain::LocalNetwork => {
unimplemented!();
}
};
// Go through all entries and find fastest entry that matches filter function
let inner = self.inner.read();
let inner = &*inner;
let mut best_inbound_relay: Option<Arc<BucketEntry>> = None;
// Iterate all known nodes for candidates
inner.with_entries(cur_ts, BucketEntryState::Unreliable, |rti, entry| {
let entry2 = entry.clone();
entry.with(rti, |rti, e| {
// Ensure we have the node's status
if let Some(node_status) = e.node_status(routing_domain) {
// Ensure the node will relay
if node_status.will_relay() {
// Compare against previous candidate
if let Some(best_inbound_relay) = best_inbound_relay.as_mut() {
// Less is faster
let better = best_inbound_relay.with(rti, |_rti, best| {
// choose low latency stability for relays
BucketEntryInner::cmp_fastest_reliable(cur_ts, e, best)
== std::cmp::Ordering::Less
});
// Now apply filter function and see if this node should be included
if better && relay_node_filter(e) {
*best_inbound_relay = entry2;
}
} else if relay_node_filter(e) {
// Always store the first candidate
best_inbound_relay = Some(entry2);
}
}
}
});
// Don't end early, iterate through all entries
Option::<()>::None
});
// Return the best inbound relay noderef
best_inbound_relay.map(|e| NodeRef::new(self.clone(), e, None))
}
}
impl core::ops::Deref for RoutingTable {
type Target = RoutingTableUnlockedInner;
fn deref(&self) -> &Self::Target {
&self.unlocked_inner
}
}