veilid/veilid-core/src/rpc_processor/mod.rs
2022-10-09 14:59:01 -04:00

990 lines
36 KiB
Rust

mod coders;
mod destination;
mod operation_waiter;
mod private_route;
mod rpc_app_call;
mod rpc_app_message;
mod rpc_cancel_tunnel;
mod rpc_complete_tunnel;
mod rpc_error;
mod rpc_find_block;
mod rpc_find_node;
mod rpc_get_value;
mod rpc_node_info_update;
mod rpc_return_receipt;
mod rpc_route;
mod rpc_set_value;
mod rpc_signal;
mod rpc_start_tunnel;
mod rpc_status;
mod rpc_supply_block;
mod rpc_validate_dial_info;
mod rpc_value_changed;
mod rpc_watch_value;
pub use destination::*;
pub use operation_waiter::*;
pub use private_route::*;
pub use rpc_error::*;
use super::*;
use crate::dht::*;
use crate::xx::*;
use capnp::message::ReaderSegments;
use coders::*;
use futures_util::StreamExt;
use network_manager::*;
use receipt_manager::*;
use routing_table::*;
use stop_token::future::FutureExt;
/////////////////////////////////////////////////////////////////////
type OperationId = u64;
/// The decoded header of an RPC message
#[derive(Debug, Clone)]
struct RPCMessageHeader {
/// Time the message was received, not sent
timestamp: u64,
/// The decoded header of the envelope
envelope: Envelope,
/// The length in bytes of the rpc message body
body_len: u64,
/// The noderef of the peer that sent the message (not the original sender). Ensures node doesn't get evicted from routing table until we're done with it
peer_noderef: NodeRef,
/// The connection from the peer sent the message (not the original sender)
connection_descriptor: ConnectionDescriptor,
/// The routing domain the message was sent through
routing_domain: RoutingDomain,
}
#[derive(Debug)]
struct RPCMessageData {
contents: Vec<u8>, // rpc messages must be a canonicalized single segment
}
impl ReaderSegments for RPCMessageData {
fn get_segment(&self, idx: u32) -> Option<&[u8]> {
if idx > 0 {
None
} else {
Some(self.contents.as_slice())
}
}
}
#[derive(Debug)]
struct RPCMessageEncoded {
header: RPCMessageHeader,
data: RPCMessageData,
}
#[derive(Debug)]
pub(crate) struct RPCMessage {
header: RPCMessageHeader,
operation: RPCOperation,
opt_sender_nr: Option<NodeRef>,
}
fn builder_to_vec<'a, T>(builder: capnp::message::Builder<T>) -> Result<Vec<u8>, RPCError>
where
T: capnp::message::Allocator + 'a,
{
let wordvec = builder
.into_reader()
.canonicalize()
.map_err(RPCError::protocol)
.map_err(logthru_rpc!())?;
Ok(capnp::Word::words_to_bytes(wordvec.as_slice()).to_vec())
}
// fn reader_to_vec<'a, T>(reader: &capnp::message::Reader<T>) -> Result<Vec<u8>, RPCError>
// where
// T: capnp::message::ReaderSegments + 'a,
// {
// let wordvec = reader
// .canonicalize()
// .map_err(RPCError::protocol)
// .map_err(logthru_rpc!())?;
// Ok(capnp::Word::words_to_bytes(wordvec.as_slice()).to_vec())
// }
#[derive(Debug)]
struct WaitableReply {
handle: OperationWaitHandle<RPCMessage>,
timeout: u64,
node_ref: NodeRef,
send_ts: u64,
send_data_kind: SendDataKind,
}
/////////////////////////////////////////////////////////////////////
#[derive(Clone, Debug, Default)]
pub struct Answer<T> {
pub latency: u64, // how long it took to get this answer
pub answer: T, // the answer itself
}
impl<T> Answer<T> {
pub fn new(latency: u64, answer: T) -> Self {
Self { latency, answer }
}
}
struct RenderedOperation {
message: Vec<u8>, // The rendered operation bytes
node_id: DHTKey, // Node id we're sending to
node_ref: Option<NodeRef>, // Node to send envelope to (may not be destination node id in case of relay)
hop_count: usize, // Total safety + private route hop count
}
/////////////////////////////////////////////////////////////////////
pub struct RPCProcessorInner {
send_channel: Option<flume::Sender<(Option<Id>, RPCMessageEncoded)>>,
stop_source: Option<StopSource>,
worker_join_handles: Vec<MustJoinHandle<()>>,
}
pub struct RPCProcessorUnlockedInner {
timeout: u64,
queue_size: u32,
concurrency: u32,
max_route_hop_count: usize,
validate_dial_info_receipt_time_ms: u32,
update_callback: UpdateCallback,
waiting_rpc_table: OperationWaiter<RPCMessage>,
waiting_app_call_table: OperationWaiter<Vec<u8>>,
}
#[derive(Clone)]
pub struct RPCProcessor {
crypto: Crypto,
config: VeilidConfig,
network_manager: NetworkManager,
routing_table: RoutingTable,
inner: Arc<Mutex<RPCProcessorInner>>,
unlocked_inner: Arc<RPCProcessorUnlockedInner>,
}
impl RPCProcessor {
fn new_inner() -> RPCProcessorInner {
RPCProcessorInner {
send_channel: None,
stop_source: None,
worker_join_handles: Vec::new(),
}
}
fn new_unlocked_inner(
config: VeilidConfig,
update_callback: UpdateCallback,
) -> RPCProcessorUnlockedInner {
// make local copy of node id for easy access
let c = config.get();
// set up channel
let mut concurrency = c.network.rpc.concurrency;
let mut queue_size = c.network.rpc.queue_size;
let mut timeout = ms_to_us(c.network.rpc.timeout_ms);
let mut max_route_hop_count = c.network.rpc.max_route_hop_count as usize;
if concurrency == 0 {
concurrency = intf::get_concurrency() / 2;
if concurrency == 0 {
concurrency = 1;
}
}
if queue_size == 0 {
queue_size = 1024;
}
if timeout == 0 {
timeout = 10000000;
}
if max_route_hop_count == 0 {
max_route_hop_count = 7usize;
}
let validate_dial_info_receipt_time_ms = c.network.dht.validate_dial_info_receipt_time_ms;
RPCProcessorUnlockedInner {
timeout,
queue_size,
concurrency,
max_route_hop_count,
validate_dial_info_receipt_time_ms,
update_callback,
waiting_rpc_table: OperationWaiter::new(),
waiting_app_call_table: OperationWaiter::new(),
}
}
pub fn new(network_manager: NetworkManager, update_callback: UpdateCallback) -> Self {
let config = network_manager.config();
Self {
crypto: network_manager.crypto(),
config: config.clone(),
network_manager: network_manager.clone(),
routing_table: network_manager.routing_table(),
inner: Arc::new(Mutex::new(Self::new_inner())),
unlocked_inner: Arc::new(Self::new_unlocked_inner(config, update_callback)),
}
}
pub fn network_manager(&self) -> NetworkManager {
self.network_manager.clone()
}
pub fn routing_table(&self) -> RoutingTable {
self.routing_table.clone()
}
//////////////////////////////////////////////////////////////////////
#[instrument(level = "debug", skip_all, err)]
pub async fn startup(&self) -> EyreResult<()> {
trace!("startup rpc processor");
let mut inner = self.inner.lock();
let channel = flume::bounded(self.unlocked_inner.queue_size as usize);
inner.send_channel = Some(channel.0.clone());
inner.stop_source = Some(StopSource::new());
// spin up N workers
trace!(
"Spinning up {} RPC workers",
self.unlocked_inner.concurrency
);
for _ in 0..self.unlocked_inner.concurrency {
let this = self.clone();
let receiver = channel.1.clone();
let jh = intf::spawn(Self::rpc_worker(
this,
inner.stop_source.as_ref().unwrap().token(),
receiver,
));
inner.worker_join_handles.push(jh);
}
Ok(())
}
#[instrument(level = "debug", skip_all)]
pub async fn shutdown(&self) {
debug!("starting rpc processor shutdown");
// Stop the rpc workers
let mut unord = FuturesUnordered::new();
{
let mut inner = self.inner.lock();
// take the join handles out
for h in inner.worker_join_handles.drain(..) {
unord.push(h);
}
// drop the stop
drop(inner.stop_source.take());
}
debug!("stopping {} rpc worker tasks", unord.len());
// Wait for them to complete
while unord.next().await.is_some() {}
debug!("resetting rpc processor state");
// Release the rpc processor
*self.inner.lock() = Self::new_inner();
debug!("finished rpc processor shutdown");
}
//////////////////////////////////////////////////////////////////////
/// Determine if a NodeInfo can be placed into the specified routing domain
fn filter_node_info(&self, routing_domain: RoutingDomain, node_info: &NodeInfo) -> bool {
let routing_table = self.routing_table();
routing_table.node_info_is_valid_in_routing_domain(routing_domain, &node_info)
}
//////////////////////////////////////////////////////////////////////
/// Search the DHT for a single node closest to a key and add it to the routing table and return the node reference
/// If no node was found in the timeout, this returns None
pub async fn search_dht_single_key(
&self,
_node_id: DHTKey,
_count: u32,
_fanout: u32,
_timeout: Option<u64>,
) -> Result<Option<NodeRef>, RPCError> {
//let routing_table = self.routing_table();
// xxx find node but stop if we find the exact node we want
// xxx return whatever node is closest after the timeout
Err(RPCError::unimplemented("search_dht_single_key")).map_err(logthru_rpc!(error))
}
/// Search the DHT for the 'count' closest nodes to a key, adding them all to the routing table if they are not there and returning their node references
pub async fn search_dht_multi_key(
&self,
_node_id: DHTKey,
_count: u32,
_fanout: u32,
_timeout: Option<u64>,
) -> Result<Vec<NodeRef>, RPCError> {
// xxx return closest nodes after the timeout
Err(RPCError::unimplemented("search_dht_multi_key")).map_err(logthru_rpc!(error))
}
/// Search the DHT for a specific node corresponding to a key unless we have that node in our routing table already, and return the node reference
/// Note: This routine can possible be recursive, hence the SendPinBoxFuture async form
pub fn resolve_node(
&self,
node_id: DHTKey,
) -> SendPinBoxFuture<Result<Option<NodeRef>, RPCError>> {
let this = self.clone();
Box::pin(async move {
let routing_table = this.routing_table();
// First see if we have the node in our routing table already
if let Some(nr) = routing_table.lookup_node_ref(node_id) {
// ensure we have some dial info for the entry already,
// if not, we should do the find_node anyway
if nr.has_any_dial_info() {
return Ok(Some(nr));
}
}
// If nobody knows where this node is, ask the DHT for it
let (count, fanout, timeout) = {
let c = this.config.get();
(
c.network.dht.resolve_node_count,
c.network.dht.resolve_node_fanout,
c.network.dht.resolve_node_timeout_ms.map(ms_to_us),
)
};
let nr = this
.search_dht_single_key(node_id, count, fanout, timeout)
.await?;
if let Some(nr) = &nr {
if nr.node_id() != node_id {
// found a close node, but not exact within our configured resolve_node timeout
return Ok(None);
}
}
Ok(nr)
})
}
#[instrument(level = "trace", skip(self, waitable_reply), err)]
async fn wait_for_reply(
&self,
waitable_reply: WaitableReply,
) -> Result<TimeoutOr<(RPCMessage, u64)>, RPCError> {
let out = self
.unlocked_inner
.waiting_rpc_table
.wait_for_op(waitable_reply.handle, waitable_reply.timeout)
.await;
match &out {
Err(_) | Ok(TimeoutOr::Timeout) => {
waitable_reply.node_ref.stats_question_lost();
}
Ok(TimeoutOr::Value((rpcreader, _))) => {
// Reply received
let recv_ts = intf::get_timestamp();
waitable_reply.node_ref.stats_answer_rcvd(
waitable_reply.send_ts,
recv_ts,
rpcreader.header.body_len,
)
}
};
out
}
/// Produce a byte buffer that represents the wire encoding of the entire
/// unencrypted envelope body for a RPC message. This incorporates
/// wrapping a private and/or safety route if they are specified.
#[instrument(level = "debug", skip(self, operation), err)]
fn render_operation(
&self,
dest: Destination,
operation: &RPCOperation,
) -> Result<RenderedOperation, RPCError> {
let out_node_id; // Envelope Node Id
let mut out_node_ref: Option<NodeRef> = None; // Node to send envelope to
let out_hop_count: usize; // Total safety + private route hop count
let out_message; // Envelope data
// Encode message to a builder and make a message reader for it
// Then produce the message as an unencrypted byte buffer
let message_vec = {
let mut msg_builder = ::capnp::message::Builder::new_default();
let mut op_builder = msg_builder.init_root::<veilid_capnp::operation::Builder>();
operation.encode(&mut op_builder)?;
builder_to_vec(msg_builder)?
};
// To where are we sending the request
match dest {
Destination::Direct {
target: ref node_ref,
ref safety_route_spec,
}
| Destination::Relay {
relay: ref node_ref,
target: _,
ref safety_route_spec,
} => {
// Send to a node without a private route
// --------------------------------------
// Get the actual destination node id accounting for relays
let (node_ref, node_id) = if let Destination::Relay {
relay: _,
target: ref dht_key,
safety_route_spec: _,
} = dest
{
(node_ref.clone(), dht_key.clone())
} else {
let node_id = node_ref.node_id();
(node_ref.clone(), node_id)
};
// Handle the existence of safety route
match safety_route_spec.as_ref() {
None => {
// If no safety route is being used, and we're not sending to a private
// route, we can use a direct envelope instead of routing
out_message = message_vec;
// Message goes directly to the node
out_node_id = node_id;
out_node_ref = Some(node_ref);
out_hop_count = 1;
}
Some(sr) => {
// No private route was specified for the request
// but we are using a safety route, so we must create an empty private route
let private_route = PrivateRoute::new_stub(node_id);
// first
out_node_id = sr
.hops
.first()
.ok_or_else(RPCError::else_internal("no hop in safety route"))?
.dial_info
.node_id
.key;
out_message =
self.wrap_with_route(Some(sr.clone()), private_route, message_vec)?;
out_hop_count = 1 + sr.hops.len();
}
};
}
Destination::PrivateRoute {
private_route,
safety_route_spec,
} => {
// Send to private route
// ---------------------
// Reply with 'route' operation
out_node_id = match safety_route_spec {
None => {
// If no safety route, the first node is the first hop of the private route
out_hop_count = private_route.hop_count as usize;
let out_node_id = match &private_route.hops {
Some(rh) => rh.dial_info.node_id.key,
_ => return Err(RPCError::internal("private route has no hops")),
};
out_message = self.wrap_with_route(None, private_route, message_vec)?;
out_node_id
}
Some(sr) => {
// If safety route is in use, first node is the first hop of the safety route
out_hop_count = 1 + sr.hops.len() + (private_route.hop_count as usize);
let out_node_id = sr
.hops
.first()
.ok_or_else(RPCError::else_internal("no hop in safety route"))?
.dial_info
.node_id
.key;
out_message = self.wrap_with_route(Some(sr), private_route, message_vec)?;
out_node_id
}
}
}
}
// Verify hop count isn't larger than out maximum routed hop count
if out_hop_count > self.unlocked_inner.max_route_hop_count {
return Err(RPCError::internal("hop count too long for route"))
.map_err(logthru_rpc!(warn));
}
Ok(RenderedOperation {
message: out_message,
node_id: out_node_id,
node_ref: out_node_ref,
hop_count: out_hop_count,
})
}
// Get signed node info to package with RPC messages to improve
// routing table caching when it is okay to do so
// This is only done in the PublicInternet routing domain because
// as far as we can tell this is the only domain that will really benefit
fn get_sender_signed_node_info(&self, dest: &Destination) -> Option<SignedNodeInfo> {
// Don't do this if the sender is to remain private
if dest.safety_route_spec().is_some() {
return None;
}
// Don't do this if our own signed node info isn't valid yet
let routing_table = self.routing_table();
let network_manager = self.network_manager();
if !RoutingTable::has_valid_own_node_info(network_manager, RoutingDomain::PublicInternet) {
return None;
}
match dest {
Destination::Direct {
target,
safety_route_spec: _,
} => {
// If the target has seen our node info already don't do this
if target.has_seen_our_node_info(RoutingDomain::PublicInternet) {
return None;
}
Some(routing_table.get_own_signed_node_info(RoutingDomain::PublicInternet))
}
Destination::Relay {
relay: _,
target,
safety_route_spec: _,
} => {
if let Some(target) = routing_table.lookup_node_ref(*target) {
if target.has_seen_our_node_info(RoutingDomain::PublicInternet) {
return None;
}
Some(routing_table.get_own_signed_node_info(RoutingDomain::PublicInternet))
} else {
None
}
}
Destination::PrivateRoute {
private_route: _,
safety_route_spec: _,
} => None,
}
}
// Issue a question over the network, possibly using an anonymized route
#[instrument(level = "debug", skip(self, question), err)]
async fn question(
&self,
dest: Destination,
question: RPCQuestion,
) -> Result<NetworkResult<WaitableReply>, RPCError> {
// Get sender info if we should send that
let opt_sender_info = self.get_sender_signed_node_info(&dest);
// Wrap question in operation
let operation = RPCOperation::new_question(question, opt_sender_info);
let op_id = operation.op_id();
// Log rpc send
debug!(target: "rpc_message", dir = "send", kind = "question", op_id, desc = operation.kind().desc(), ?dest);
// Produce rendered operation
let RenderedOperation {
message,
node_id,
node_ref,
hop_count,
} = self.render_operation(dest, &operation)?;
// If we need to resolve the first hop, do it
let node_ref = match node_ref {
None => match self.resolve_node(node_id).await? {
None => {
return Ok(NetworkResult::no_connection_other(node_id));
}
Some(nr) => nr,
},
Some(nr) => nr,
};
// Calculate answer timeout
// Timeout is number of hops times the timeout per hop
let timeout = self.unlocked_inner.timeout * (hop_count as u64);
// Set up op id eventual
let handle = self.unlocked_inner.waiting_rpc_table.add_op_waiter(op_id);
// Send question
let bytes = message.len() as u64;
let send_ts = intf::get_timestamp();
let send_data_kind = network_result_try!(self
.network_manager()
.send_envelope(node_ref.clone(), Some(node_id), message)
.await
.map_err(|e| {
// If we're returning an error, clean up
node_ref
.stats_failed_to_send(send_ts, true);
RPCError::network(e)
})? => {
// If we couldn't send we're still cleaning up
node_ref
.stats_failed_to_send(send_ts, true);
}
);
// Successfully sent
node_ref.stats_question_sent(send_ts, bytes, true);
// Pass back waitable reply completion
Ok(NetworkResult::value(WaitableReply {
handle,
timeout,
node_ref,
send_ts,
send_data_kind,
}))
}
// Issue a statement over the network, possibly using an anonymized route
#[instrument(level = "debug", skip(self, statement), err)]
async fn statement(
&self,
dest: Destination,
statement: RPCStatement,
) -> Result<NetworkResult<()>, RPCError> {
// Get sender info if we should send that
let opt_sender_info = self.get_sender_signed_node_info(&dest);
// Wrap statement in operation
let operation = RPCOperation::new_statement(statement, opt_sender_info);
// Log rpc send
debug!(target: "rpc_message", dir = "send", kind = "statement", op_id = operation.op_id(), desc = operation.kind().desc(), ?dest);
// Produce rendered operation
let RenderedOperation {
message,
node_id,
node_ref,
hop_count: _,
} = self.render_operation(dest, &operation)?;
// If we need to resolve the first hop, do it
let node_ref = match node_ref {
None => match self.resolve_node(node_id).await? {
None => {
return Ok(NetworkResult::no_connection_other(node_id));
}
Some(nr) => nr,
},
Some(nr) => nr,
};
// Send statement
let bytes = message.len() as u64;
let send_ts = intf::get_timestamp();
let _send_data_kind = network_result_try!(self
.network_manager()
.send_envelope(node_ref.clone(), Some(node_id), message)
.await
.map_err(|e| {
// If we're returning an error, clean up
node_ref
.stats_failed_to_send(send_ts, true);
RPCError::network(e)
})? => {
// If we couldn't send we're still cleaning up
node_ref
.stats_failed_to_send(send_ts, true);
}
);
// Successfully sent
node_ref.stats_question_sent(send_ts, bytes, true);
Ok(NetworkResult::value(()))
}
// Convert the 'RespondTo' into a 'Destination' for a response
fn get_respond_to_destination(&self, request: &RPCMessage) -> Destination {
// Get the question 'respond to'
let respond_to = match request.operation.kind() {
RPCOperationKind::Question(q) => q.respond_to(),
_ => {
panic!("not a question");
}
};
// To where should we respond?
match respond_to {
RespondTo::Sender => {
// Reply directly to the request's source
let sender_id = request.header.envelope.get_sender_id();
// This may be a different node's reference than the 'sender' in the case of a relay
let peer_noderef = request.header.peer_noderef.clone();
// If the sender_id is that of the peer, then this is a direct reply
// else it is a relayed reply through the peer
if peer_noderef.node_id() == sender_id {
Destination::direct(peer_noderef)
} else {
Destination::relay(peer_noderef, sender_id)
}
}
RespondTo::PrivateRoute(pr) => Destination::private_route(pr.clone()),
}
}
// Issue a reply over the network, possibly using an anonymized route
// The request must want a response, or this routine fails
#[instrument(level = "debug", skip(self, request, answer), err)]
async fn answer(
&self,
request: RPCMessage,
answer: RPCAnswer,
) -> Result<NetworkResult<()>, RPCError> {
// Extract destination from respond_to
let dest = self.get_respond_to_destination(&request);
// Get sender info if we should send that
let opt_sender_info = self.get_sender_signed_node_info(&dest);
// Wrap answer in operation
let operation = RPCOperation::new_answer(&request.operation, answer, opt_sender_info);
// Log rpc send
debug!(target: "rpc_message", dir = "send", kind = "answer", op_id = operation.op_id(), desc = operation.kind().desc(), ?dest);
// Produce rendered operation
let RenderedOperation {
message,
node_id,
node_ref,
hop_count: _,
} = self.render_operation(dest, &operation)?;
// If we need to resolve the first hop, do it
let node_ref = match node_ref {
None => match self.resolve_node(node_id).await? {
None => {
return Ok(NetworkResult::no_connection_other(node_id));
}
Some(nr) => nr,
},
Some(nr) => nr,
};
// Send the reply
let bytes = message.len() as u64;
let send_ts = intf::get_timestamp();
network_result_try!(self.network_manager()
.send_envelope(node_ref.clone(), Some(node_id), message)
.await
.map_err(|e| {
// If we're returning an error, clean up
node_ref
.stats_failed_to_send(send_ts, true);
RPCError::network(e)
})? => {
// If we couldn't send we're still cleaning up
node_ref
.stats_failed_to_send(send_ts, false);
}
);
// Reply successfully sent
node_ref.stats_answer_sent(bytes);
Ok(NetworkResult::value(()))
}
//////////////////////////////////////////////////////////////////////
#[instrument(level = "trace", skip(self, encoded_msg), err)]
async fn process_rpc_message_version_0(
&self,
encoded_msg: RPCMessageEncoded,
) -> Result<(), RPCError> {
// Get the routing domain this message came over
let routing_domain = encoded_msg.header.routing_domain;
// Decode the operation
let sender_node_id = encoded_msg.header.envelope.get_sender_id();
// Decode the RPC message
let operation = {
let reader = capnp::message::Reader::new(encoded_msg.data, Default::default());
let op_reader = reader
.get_root::<veilid_capnp::operation::Reader>()
.map_err(RPCError::protocol)
.map_err(logthru_rpc!())?;
RPCOperation::decode(&op_reader, &sender_node_id)?
};
// Get the sender noderef, incorporating and 'sender node info'
let mut opt_sender_nr: Option<NodeRef> = None;
if let Some(sender_node_info) = operation.sender_node_info() {
// Sender NodeInfo was specified, update our routing table with it
if !self.filter_node_info(routing_domain, &sender_node_info.node_info) {
return Err(RPCError::invalid_format(
"sender signednodeinfo has invalid peer scope",
));
}
opt_sender_nr = self.routing_table().register_node_with_signed_node_info(
routing_domain,
sender_node_id,
sender_node_info.clone(),
false,
);
}
// look up sender node, in case it's different than our peer due to relaying
if opt_sender_nr.is_none() {
opt_sender_nr = self.routing_table().lookup_node_ref(sender_node_id)
}
// Mark this sender as having seen our node info over this routing domain
// because it managed to reach us over that routing domain
if let Some(sender_nr) = &opt_sender_nr {
sender_nr.set_seen_our_node_info(routing_domain);
}
// Make the RPC message
let msg = RPCMessage {
header: encoded_msg.header,
operation,
opt_sender_nr,
};
// Process stats
let kind = match msg.operation.kind() {
RPCOperationKind::Question(_) => {
if let Some(sender_nr) = msg.opt_sender_nr.clone() {
sender_nr.stats_question_rcvd(msg.header.timestamp, msg.header.body_len);
}
"question"
}
RPCOperationKind::Statement(_) => {
if let Some(sender_nr) = msg.opt_sender_nr.clone() {
sender_nr.stats_question_rcvd(msg.header.timestamp, msg.header.body_len);
}
"statement"
}
RPCOperationKind::Answer(_) => {
// Answer stats are processed in wait_for_reply
"answer"
}
};
// Log rpc receive
debug!(target: "rpc_message", dir = "recv", kind, op_id = msg.operation.op_id(), desc = msg.operation.kind().desc(), sender_id = ?sender_node_id);
// Process specific message kind
match msg.operation.kind() {
RPCOperationKind::Question(q) => match q.detail() {
RPCQuestionDetail::StatusQ(_) => self.process_status_q(msg).await,
RPCQuestionDetail::FindNodeQ(_) => self.process_find_node_q(msg).await,
RPCQuestionDetail::AppCallQ(_) => self.process_app_call_q(msg).await,
RPCQuestionDetail::GetValueQ(_) => self.process_get_value_q(msg).await,
RPCQuestionDetail::SetValueQ(_) => self.process_set_value_q(msg).await,
RPCQuestionDetail::WatchValueQ(_) => self.process_watch_value_q(msg).await,
RPCQuestionDetail::SupplyBlockQ(_) => self.process_supply_block_q(msg).await,
RPCQuestionDetail::FindBlockQ(_) => self.process_find_block_q(msg).await,
RPCQuestionDetail::StartTunnelQ(_) => self.process_start_tunnel_q(msg).await,
RPCQuestionDetail::CompleteTunnelQ(_) => self.process_complete_tunnel_q(msg).await,
RPCQuestionDetail::CancelTunnelQ(_) => self.process_cancel_tunnel_q(msg).await,
},
RPCOperationKind::Statement(s) => match s.detail() {
RPCStatementDetail::ValidateDialInfo(_) => {
self.process_validate_dial_info(msg).await
}
RPCStatementDetail::Route(_) => self.process_route(msg).await,
RPCStatementDetail::NodeInfoUpdate(_) => self.process_node_info_update(msg).await,
RPCStatementDetail::ValueChanged(_) => self.process_value_changed(msg).await,
RPCStatementDetail::Signal(_) => self.process_signal(msg).await,
RPCStatementDetail::ReturnReceipt(_) => self.process_return_receipt(msg).await,
RPCStatementDetail::AppMessage(_) => self.process_app_message(msg).await,
},
RPCOperationKind::Answer(_) => {
self.unlocked_inner
.waiting_rpc_table
.complete_op_waiter(msg.operation.op_id(), msg)
.await
}
}
}
#[instrument(level = "trace", skip(self, msg), err)]
async fn process_rpc_message(&self, msg: RPCMessageEncoded) -> Result<(), RPCError> {
if msg.header.envelope.get_version() == 0 {
self.process_rpc_message_version_0(msg).await
} else {
Err(RPCError::Internal(format!(
"unsupported envelope version: {}, newest supported is version 0",
msg.header.envelope.get_version()
)))
}
}
async fn rpc_worker(
self,
stop_token: StopToken,
receiver: flume::Receiver<(Option<Id>, RPCMessageEncoded)>,
) {
while let Ok(Ok((_span_id, msg))) =
receiver.recv_async().timeout_at(stop_token.clone()).await
{
let rpc_worker_span = span!(parent: None, Level::TRACE, "rpc_worker recv");
// xxx: causes crash (Missing otel data span extensions)
// rpc_worker_span.follows_from(span_id);
let _ = self
.process_rpc_message(msg)
.instrument(rpc_worker_span)
.await
.map_err(logthru_rpc!("couldn't process rpc message"));
}
}
#[instrument(level = "trace", skip(self, body), err)]
pub fn enqueue_message(
&self,
envelope: Envelope,
body: Vec<u8>,
peer_noderef: NodeRef,
connection_descriptor: ConnectionDescriptor,
routing_domain: RoutingDomain,
) -> EyreResult<()> {
let msg = RPCMessageEncoded {
header: RPCMessageHeader {
timestamp: intf::get_timestamp(),
envelope,
body_len: body.len() as u64,
peer_noderef,
connection_descriptor,
routing_domain,
},
data: RPCMessageData { contents: body },
};
let send_channel = {
let inner = self.inner.lock();
inner.send_channel.as_ref().unwrap().clone()
};
let span_id = Span::current().id();
send_channel
.try_send((span_id, msg))
.wrap_err("failed to enqueue received RPC message")?;
Ok(())
}
}