1561 lines
59 KiB
Rust
1561 lines
59 KiB
Rust
use crate::*;
|
|
|
|
#[cfg(not(target_arch = "wasm32"))]
|
|
mod native;
|
|
#[cfg(target_arch = "wasm32")]
|
|
mod wasm;
|
|
|
|
mod connection_handle;
|
|
mod connection_limits;
|
|
mod connection_manager;
|
|
mod connection_table;
|
|
mod network_connection;
|
|
|
|
pub mod tests;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
pub use network_connection::*;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
use connection_handle::*;
|
|
use connection_limits::*;
|
|
use connection_manager::*;
|
|
use dht::*;
|
|
use hashlink::LruCache;
|
|
use intf::*;
|
|
#[cfg(not(target_arch = "wasm32"))]
|
|
use native::*;
|
|
use receipt_manager::*;
|
|
use routing_table::*;
|
|
use rpc_processor::*;
|
|
#[cfg(target_arch = "wasm32")]
|
|
use wasm::*;
|
|
use xx::*;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
pub const RELAY_MANAGEMENT_INTERVAL_SECS: u32 = 1;
|
|
pub const MAX_MESSAGE_SIZE: usize = MAX_ENVELOPE_SIZE;
|
|
pub const IPADDR_TABLE_SIZE: usize = 1024;
|
|
pub const IPADDR_MAX_INACTIVE_DURATION_US: u64 = 300_000_000u64; // 5 minutes
|
|
pub const GLOBAL_ADDRESS_CHANGE_DETECTION_COUNT: usize = 3;
|
|
pub const BOOT_MAGIC: &[u8; 4] = b"BOOT";
|
|
|
|
#[derive(Copy, Clone, Debug, Default)]
|
|
pub struct ProtocolConfig {
|
|
pub outbound: ProtocolSet,
|
|
pub inbound: ProtocolSet,
|
|
}
|
|
|
|
// Things we get when we start up and go away when we shut down
|
|
// Routing table is not in here because we want it to survive a network shutdown/startup restart
|
|
#[derive(Clone)]
|
|
struct NetworkComponents {
|
|
net: Network,
|
|
connection_manager: ConnectionManager,
|
|
rpc_processor: RPCProcessor,
|
|
receipt_manager: ReceiptManager,
|
|
}
|
|
|
|
// Statistics per address
|
|
#[derive(Clone, Default)]
|
|
pub struct PerAddressStats {
|
|
last_seen_ts: u64,
|
|
transfer_stats_accounting: TransferStatsAccounting,
|
|
transfer_stats: TransferStatsDownUp,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
|
|
pub struct PerAddressStatsKey(IpAddr);
|
|
|
|
impl Default for PerAddressStatsKey {
|
|
fn default() -> Self {
|
|
Self(IpAddr::V4(Ipv4Addr::UNSPECIFIED))
|
|
}
|
|
}
|
|
|
|
// Statistics about the low-level network
|
|
#[derive(Clone)]
|
|
pub struct NetworkManagerStats {
|
|
self_stats: PerAddressStats,
|
|
per_address_stats: LruCache<PerAddressStatsKey, PerAddressStats>,
|
|
}
|
|
|
|
impl Default for NetworkManagerStats {
|
|
fn default() -> Self {
|
|
Self {
|
|
self_stats: PerAddressStats::default(),
|
|
per_address_stats: LruCache::new(IPADDR_TABLE_SIZE),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ClientWhitelistEntry {
|
|
last_seen_ts: u64,
|
|
}
|
|
|
|
// Mechanism required to contact another node
|
|
#[derive(Clone, Debug)]
|
|
enum ContactMethod {
|
|
Unreachable, // Node is not reachable by any means
|
|
Direct(DialInfo), // Contact the node directly
|
|
SignalReverse(NodeRef, NodeRef), // Request via signal the node connect back directly
|
|
SignalHolePunch(NodeRef, NodeRef), // Request via signal the node negotiate a hole punch
|
|
InboundRelay(NodeRef), // Must use an inbound relay to reach the node
|
|
OutboundRelay(NodeRef), // Must use outbound relay to reach the node
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub enum SendDataKind {
|
|
LocalDirect,
|
|
GlobalDirect,
|
|
GlobalIndirect,
|
|
}
|
|
|
|
// The mutable state of the network manager
|
|
struct NetworkManagerInner {
|
|
routing_table: Option<RoutingTable>,
|
|
components: Option<NetworkComponents>,
|
|
update_callback: Option<UpdateCallback>,
|
|
stats: NetworkManagerStats,
|
|
client_whitelist: LruCache<DHTKey, ClientWhitelistEntry>,
|
|
relay_node: Option<NodeRef>,
|
|
public_address_check_cache: LruCache<DHTKey, SocketAddress>,
|
|
}
|
|
|
|
struct NetworkManagerUnlockedInner {
|
|
// Background processes
|
|
rolling_transfers_task: TickTask,
|
|
relay_management_task: TickTask,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct NetworkManager {
|
|
config: VeilidConfig,
|
|
table_store: TableStore,
|
|
crypto: Crypto,
|
|
inner: Arc<Mutex<NetworkManagerInner>>,
|
|
unlocked_inner: Arc<NetworkManagerUnlockedInner>,
|
|
}
|
|
|
|
impl NetworkManager {
|
|
fn new_inner() -> NetworkManagerInner {
|
|
NetworkManagerInner {
|
|
routing_table: None,
|
|
components: None,
|
|
update_callback: None,
|
|
stats: NetworkManagerStats::default(),
|
|
client_whitelist: LruCache::new_unbounded(),
|
|
relay_node: None,
|
|
public_address_check_cache: LruCache::new(8),
|
|
}
|
|
}
|
|
fn new_unlocked_inner(_config: VeilidConfig) -> NetworkManagerUnlockedInner {
|
|
//let c = config.get();
|
|
NetworkManagerUnlockedInner {
|
|
rolling_transfers_task: TickTask::new(ROLLING_TRANSFERS_INTERVAL_SECS),
|
|
relay_management_task: TickTask::new(RELAY_MANAGEMENT_INTERVAL_SECS),
|
|
}
|
|
}
|
|
|
|
pub fn new(config: VeilidConfig, table_store: TableStore, crypto: Crypto) -> Self {
|
|
let this = Self {
|
|
config: config.clone(),
|
|
table_store,
|
|
crypto,
|
|
inner: Arc::new(Mutex::new(Self::new_inner())),
|
|
unlocked_inner: Arc::new(Self::new_unlocked_inner(config)),
|
|
};
|
|
// Set rolling transfers tick task
|
|
{
|
|
let this2 = this.clone();
|
|
this.unlocked_inner
|
|
.rolling_transfers_task
|
|
.set_routine(move |s, l, t| {
|
|
Box::pin(this2.clone().rolling_transfers_task_routine(s, l, t))
|
|
});
|
|
}
|
|
// Set relay management tick task
|
|
{
|
|
let this2 = this.clone();
|
|
this.unlocked_inner
|
|
.relay_management_task
|
|
.set_routine(move |s, l, t| {
|
|
Box::pin(this2.clone().relay_management_task_routine(s, l, t))
|
|
});
|
|
}
|
|
this
|
|
}
|
|
pub fn config(&self) -> VeilidConfig {
|
|
self.config.clone()
|
|
}
|
|
pub fn table_store(&self) -> TableStore {
|
|
self.table_store.clone()
|
|
}
|
|
pub fn crypto(&self) -> Crypto {
|
|
self.crypto.clone()
|
|
}
|
|
pub fn routing_table(&self) -> RoutingTable {
|
|
self.inner.lock().routing_table.as_ref().unwrap().clone()
|
|
}
|
|
pub fn net(&self) -> Network {
|
|
self.inner.lock().components.as_ref().unwrap().net.clone()
|
|
}
|
|
pub fn rpc_processor(&self) -> RPCProcessor {
|
|
self.inner
|
|
.lock()
|
|
.components
|
|
.as_ref()
|
|
.unwrap()
|
|
.rpc_processor
|
|
.clone()
|
|
}
|
|
pub fn receipt_manager(&self) -> ReceiptManager {
|
|
self.inner
|
|
.lock()
|
|
.components
|
|
.as_ref()
|
|
.unwrap()
|
|
.receipt_manager
|
|
.clone()
|
|
}
|
|
pub fn connection_manager(&self) -> ConnectionManager {
|
|
self.inner
|
|
.lock()
|
|
.components
|
|
.as_ref()
|
|
.unwrap()
|
|
.connection_manager
|
|
.clone()
|
|
}
|
|
|
|
pub fn relay_node(&self) -> Option<NodeRef> {
|
|
self.inner.lock().relay_node.clone()
|
|
}
|
|
|
|
#[instrument(level = "debug", skip_all, err)]
|
|
pub async fn init(&self, update_callback: UpdateCallback) -> Result<(), String> {
|
|
let routing_table = RoutingTable::new(self.clone());
|
|
routing_table.init().await?;
|
|
self.inner.lock().routing_table = Some(routing_table.clone());
|
|
self.inner.lock().update_callback = Some(update_callback);
|
|
Ok(())
|
|
}
|
|
|
|
#[instrument(level = "debug", skip_all)]
|
|
pub async fn terminate(&self) {
|
|
let routing_table = {
|
|
let mut inner = self.inner.lock();
|
|
inner.routing_table.take()
|
|
};
|
|
if let Some(routing_table) = routing_table {
|
|
routing_table.terminate().await;
|
|
}
|
|
self.inner.lock().update_callback = None;
|
|
}
|
|
|
|
#[instrument(level = "debug", skip_all, err)]
|
|
pub async fn internal_startup(&self) -> Result<(), String> {
|
|
trace!("NetworkManager::internal_startup begin");
|
|
if self.inner.lock().components.is_some() {
|
|
debug!("NetworkManager::internal_startup already started");
|
|
return Ok(());
|
|
}
|
|
|
|
// Create network components
|
|
let net = Network::new(self.clone());
|
|
let connection_manager = ConnectionManager::new(self.clone());
|
|
let rpc_processor = RPCProcessor::new(self.clone());
|
|
let receipt_manager = ReceiptManager::new(self.clone());
|
|
self.inner.lock().components = Some(NetworkComponents {
|
|
net: net.clone(),
|
|
connection_manager: connection_manager.clone(),
|
|
rpc_processor: rpc_processor.clone(),
|
|
receipt_manager: receipt_manager.clone(),
|
|
});
|
|
|
|
// Start network components
|
|
connection_manager.startup().await;
|
|
net.startup().await?;
|
|
rpc_processor.startup().await?;
|
|
receipt_manager.startup().await?;
|
|
|
|
trace!("NetworkManager::internal_startup end");
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[instrument(level = "debug", skip_all, err)]
|
|
pub async fn startup(&self) -> Result<(), String> {
|
|
if let Err(e) = self.internal_startup().await {
|
|
self.shutdown().await;
|
|
return Err(e);
|
|
}
|
|
|
|
self.send_network_update();
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[instrument(level = "debug", skip_all)]
|
|
pub async fn shutdown(&self) {
|
|
debug!("starting network manager shutdown");
|
|
|
|
// Cancel all tasks
|
|
debug!("stopping rolling transfers task");
|
|
if let Err(e) = self.unlocked_inner.rolling_transfers_task.stop().await {
|
|
warn!("rolling_transfers_task not stopped: {}", e);
|
|
}
|
|
debug!("stopping relay management task task");
|
|
if let Err(e) = self.unlocked_inner.relay_management_task.stop().await {
|
|
warn!("relay_management_task not stopped: {}", e);
|
|
}
|
|
|
|
// Shutdown network components if they started up
|
|
debug!("shutting down network components");
|
|
|
|
let components = self.inner.lock().components.clone();
|
|
if let Some(components) = components {
|
|
components.net.shutdown().await;
|
|
components.rpc_processor.shutdown().await;
|
|
components.receipt_manager.shutdown().await;
|
|
components.connection_manager.shutdown().await;
|
|
}
|
|
|
|
// reset the state
|
|
debug!("resetting network manager state");
|
|
{
|
|
let mut inner = self.inner.lock();
|
|
inner.components = None;
|
|
inner.relay_node = None;
|
|
}
|
|
|
|
// send update
|
|
debug!("sending network state update");
|
|
self.send_network_update();
|
|
|
|
debug!("finished network manager shutdown");
|
|
}
|
|
|
|
pub fn update_client_whitelist(&self, client: DHTKey) {
|
|
let mut inner = self.inner.lock();
|
|
match inner.client_whitelist.entry(client) {
|
|
hashlink::lru_cache::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().last_seen_ts = intf::get_timestamp()
|
|
}
|
|
hashlink::lru_cache::Entry::Vacant(entry) => {
|
|
entry.insert(ClientWhitelistEntry {
|
|
last_seen_ts: intf::get_timestamp(),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self), ret)]
|
|
pub fn check_client_whitelist(&self, client: DHTKey) -> bool {
|
|
let mut inner = self.inner.lock();
|
|
|
|
match inner.client_whitelist.entry(client) {
|
|
hashlink::lru_cache::Entry::Occupied(mut entry) => {
|
|
entry.get_mut().last_seen_ts = intf::get_timestamp();
|
|
true
|
|
}
|
|
hashlink::lru_cache::Entry::Vacant(_) => false,
|
|
}
|
|
}
|
|
|
|
pub fn purge_client_whitelist(&self) {
|
|
let timeout_ms = self.config.get().network.client_whitelist_timeout_ms;
|
|
let mut inner = self.inner.lock();
|
|
let cutoff_timestamp = intf::get_timestamp() - ((timeout_ms as u64) * 1000u64);
|
|
// Remove clients from the whitelist that haven't been since since our whitelist timeout
|
|
while inner
|
|
.client_whitelist
|
|
.peek_lru()
|
|
.map(|v| v.1.last_seen_ts < cutoff_timestamp)
|
|
.unwrap_or_default()
|
|
{
|
|
let (k, v) = inner.client_whitelist.remove_lru().unwrap();
|
|
trace!(key=?k, value=?v, "purge_client_whitelist: remove_lru")
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "debug", skip_all, err)]
|
|
async fn restart_net(&self, net: Network) -> Result<(), String> {
|
|
net.shutdown().await;
|
|
self.send_network_update();
|
|
net.startup().await?;
|
|
self.send_network_update();
|
|
Ok(())
|
|
}
|
|
|
|
pub async fn tick(&self) -> Result<(), String> {
|
|
let (routing_table, net, receipt_manager) = {
|
|
let inner = self.inner.lock();
|
|
let components = inner.components.as_ref().unwrap();
|
|
(
|
|
inner.routing_table.as_ref().unwrap().clone(),
|
|
components.net.clone(),
|
|
components.receipt_manager.clone(),
|
|
)
|
|
};
|
|
|
|
// If the network needs to be reset, do it
|
|
// if things can't restart, then we fail out of the attachment manager
|
|
if net.needs_restart() {
|
|
self.restart_net(net.clone()).await?;
|
|
}
|
|
|
|
// Run the rolling transfers task
|
|
self.unlocked_inner.rolling_transfers_task.tick().await?;
|
|
|
|
// Run the relay management task
|
|
self.unlocked_inner.relay_management_task.tick().await?;
|
|
|
|
// Run the routing table tick
|
|
routing_table.tick().await?;
|
|
|
|
// Run the low level network tick
|
|
net.tick().await?;
|
|
|
|
// Run the receipt manager tick
|
|
receipt_manager.tick().await?;
|
|
|
|
// Purge the client whitelist
|
|
self.purge_client_whitelist();
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Return what network class we are in
|
|
pub fn get_network_class(&self) -> Option<NetworkClass> {
|
|
if let Some(components) = &self.inner.lock().components {
|
|
components.net.get_network_class()
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
// Get our node's capabilities
|
|
pub fn generate_node_status(&self) -> NodeStatus {
|
|
let peer_info = self.routing_table().get_own_peer_info();
|
|
|
|
let will_route = peer_info.signed_node_info.node_info.can_inbound_relay(); // xxx: eventually this may have more criteria added
|
|
let will_tunnel = peer_info.signed_node_info.node_info.can_inbound_relay(); // xxx: we may want to restrict by battery life and network bandwidth at some point
|
|
let will_signal = peer_info.signed_node_info.node_info.can_signal();
|
|
let will_relay = peer_info.signed_node_info.node_info.can_inbound_relay();
|
|
let will_validate_dial_info = peer_info
|
|
.signed_node_info
|
|
.node_info
|
|
.can_validate_dial_info();
|
|
|
|
NodeStatus {
|
|
will_route,
|
|
will_tunnel,
|
|
will_signal,
|
|
will_relay,
|
|
will_validate_dial_info,
|
|
}
|
|
}
|
|
|
|
// Return what protocols we have enabled
|
|
pub fn get_protocol_config(&self) -> Option<ProtocolConfig> {
|
|
if let Some(components) = &self.inner.lock().components {
|
|
components.net.get_protocol_config()
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
// Generates a multi-shot/normal receipt
|
|
#[instrument(level = "trace", skip(self, extra_data, callback), err)]
|
|
pub fn generate_receipt<D: AsRef<[u8]>>(
|
|
&self,
|
|
expiration_us: u64,
|
|
expected_returns: u32,
|
|
extra_data: D,
|
|
callback: impl ReceiptCallback,
|
|
) -> Result<Vec<u8>, String> {
|
|
let receipt_manager = self.receipt_manager();
|
|
let routing_table = self.routing_table();
|
|
|
|
// Generate receipt and serialized form to return
|
|
let nonce = Crypto::get_random_nonce();
|
|
let receipt = Receipt::try_new(0, nonce, routing_table.node_id(), extra_data)?;
|
|
let out = receipt
|
|
.to_signed_data(&routing_table.node_id_secret())
|
|
.map_err(|_| "failed to generate signed receipt".to_owned())?;
|
|
|
|
// Record the receipt for later
|
|
let exp_ts = intf::get_timestamp() + expiration_us;
|
|
receipt_manager.record_receipt(receipt, exp_ts, expected_returns, callback);
|
|
|
|
Ok(out)
|
|
}
|
|
|
|
// Generates a single-shot/normal receipt
|
|
#[instrument(level = "trace", skip(self, extra_data), err)]
|
|
pub fn generate_single_shot_receipt<D: AsRef<[u8]>>(
|
|
&self,
|
|
expiration_us: u64,
|
|
extra_data: D,
|
|
) -> Result<(Vec<u8>, EventualValueFuture<ReceiptEvent>), String> {
|
|
let receipt_manager = self.receipt_manager();
|
|
let routing_table = self.routing_table();
|
|
|
|
// Generate receipt and serialized form to return
|
|
let nonce = Crypto::get_random_nonce();
|
|
let receipt = Receipt::try_new(0, nonce, routing_table.node_id(), extra_data)?;
|
|
let out = receipt
|
|
.to_signed_data(&routing_table.node_id_secret())
|
|
.map_err(|_| "failed to generate signed receipt".to_owned())?;
|
|
|
|
// Record the receipt for later
|
|
let exp_ts = intf::get_timestamp() + expiration_us;
|
|
let eventual = SingleShotEventual::new(Some(ReceiptEvent::Cancelled));
|
|
let instance = eventual.instance();
|
|
receipt_manager.record_single_shot_receipt(receipt, exp_ts, eventual);
|
|
|
|
Ok((out, instance))
|
|
}
|
|
|
|
// Process a received out-of-band receipt
|
|
#[instrument(level = "trace", skip(self, receipt_data), err)]
|
|
pub async fn handle_out_of_band_receipt<R: AsRef<[u8]>>(
|
|
&self,
|
|
receipt_data: R,
|
|
) -> Result<(), String> {
|
|
let receipt_manager = self.receipt_manager();
|
|
|
|
let receipt = Receipt::from_signed_data(receipt_data.as_ref())
|
|
.map_err(|_| "failed to parse signed out-of-band receipt".to_owned())?;
|
|
|
|
receipt_manager.handle_receipt(receipt, None).await
|
|
}
|
|
|
|
// Process a received in-band receipt
|
|
#[instrument(level = "trace", skip(self, receipt_data), err)]
|
|
pub async fn handle_in_band_receipt<R: AsRef<[u8]>>(
|
|
&self,
|
|
receipt_data: R,
|
|
inbound_nr: NodeRef,
|
|
) -> Result<(), String> {
|
|
let receipt_manager = self.receipt_manager();
|
|
|
|
let receipt = Receipt::from_signed_data(receipt_data.as_ref())
|
|
.map_err(|_| "failed to parse signed in-band receipt".to_owned())?;
|
|
|
|
receipt_manager
|
|
.handle_receipt(receipt, Some(inbound_nr))
|
|
.await
|
|
}
|
|
|
|
// Process a received signal
|
|
#[instrument(level = "trace", skip(self), err)]
|
|
pub async fn handle_signal(&self, signal_info: SignalInfo) -> Result<(), String> {
|
|
match signal_info {
|
|
SignalInfo::ReverseConnect { receipt, peer_info } => {
|
|
let routing_table = self.routing_table();
|
|
let rpc = self.rpc_processor();
|
|
|
|
// Add the peer info to our routing table
|
|
let peer_nr = routing_table.register_node_with_signed_node_info(
|
|
peer_info.node_id.key,
|
|
peer_info.signed_node_info,
|
|
)?;
|
|
|
|
// Make a reverse connection to the peer and send the receipt to it
|
|
rpc.rpc_call_return_receipt(Destination::Direct(peer_nr), None, receipt)
|
|
.await
|
|
.map_err(map_to_string)?;
|
|
}
|
|
SignalInfo::HolePunch { receipt, peer_info } => {
|
|
let routing_table = self.routing_table();
|
|
let rpc = self.rpc_processor();
|
|
|
|
// Add the peer info to our routing table
|
|
let mut peer_nr = routing_table.register_node_with_signed_node_info(
|
|
peer_info.node_id.key,
|
|
peer_info.signed_node_info,
|
|
)?;
|
|
|
|
// Get the udp direct dialinfo for the hole punch
|
|
peer_nr.filter_protocols(ProtocolSet::only(ProtocolType::UDP));
|
|
let hole_punch_dial_info_detail = peer_nr
|
|
.first_filtered_dial_info_detail(Some(RoutingDomain::PublicInternet))
|
|
.ok_or_else(|| "No hole punch capable dialinfo found for node".to_owned())?;
|
|
|
|
// Now that we picked a specific dialinfo, further restrict the noderef to the specific address type
|
|
let mut filter = peer_nr.take_filter().unwrap();
|
|
filter.peer_scope = PeerScope::Global;
|
|
filter.address_type = Some(hole_punch_dial_info_detail.dial_info.address_type());
|
|
peer_nr.set_filter(Some(filter));
|
|
|
|
// Do our half of the hole punch by sending an empty packet
|
|
// Both sides will do this and then the receipt will get sent over the punched hole
|
|
self.net()
|
|
.send_data_to_dial_info(
|
|
hole_punch_dial_info_detail.dial_info.clone(),
|
|
Vec::new(),
|
|
)
|
|
.await?;
|
|
|
|
// XXX: do we need a delay here? or another hole punch packet?
|
|
|
|
// Return the receipt using the same dial info send the receipt to it
|
|
rpc.rpc_call_return_receipt(Destination::Direct(peer_nr), None, receipt)
|
|
.await
|
|
.map_err(map_to_string)?;
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Builds an envelope for sending over the network
|
|
#[instrument(level = "trace", skip(self, body), err)]
|
|
fn build_envelope<B: AsRef<[u8]>>(
|
|
&self,
|
|
dest_node_id: DHTKey,
|
|
version: u8,
|
|
body: B,
|
|
) -> Result<Vec<u8>, String> {
|
|
// DH to get encryption key
|
|
let routing_table = self.routing_table();
|
|
let node_id = routing_table.node_id();
|
|
let node_id_secret = routing_table.node_id_secret();
|
|
|
|
// Get timestamp, nonce
|
|
let ts = intf::get_timestamp();
|
|
let nonce = Crypto::get_random_nonce();
|
|
|
|
// Encode envelope
|
|
let envelope = Envelope::new(version, ts, nonce, node_id, dest_node_id);
|
|
envelope
|
|
.to_encrypted_data(self.crypto.clone(), body.as_ref(), &node_id_secret)
|
|
.map_err(|_| "envelope failed to encode".to_owned())
|
|
}
|
|
|
|
// Called by the RPC handler when we want to issue an RPC request or response
|
|
// node_ref is the direct destination to which the envelope will be sent
|
|
// If 'node_id' is specified, it can be different than node_ref.node_id()
|
|
// which will cause the envelope to be relayed
|
|
#[instrument(level = "trace", skip(self, body), ret, err)]
|
|
pub async fn send_envelope<B: AsRef<[u8]>>(
|
|
&self,
|
|
node_ref: NodeRef,
|
|
envelope_node_id: Option<DHTKey>,
|
|
body: B,
|
|
) -> Result<SendDataKind, String> {
|
|
let via_node_id = node_ref.node_id();
|
|
let envelope_node_id = envelope_node_id.unwrap_or(via_node_id);
|
|
|
|
if envelope_node_id != via_node_id {
|
|
log_net!(
|
|
"sending envelope to {:?} via {:?}",
|
|
envelope_node_id,
|
|
node_ref
|
|
);
|
|
} else {
|
|
log_net!("sending envelope to {:?}", node_ref);
|
|
}
|
|
// Get node's min/max version and see if we can send to it
|
|
// and if so, get the max version we can use
|
|
let version = if let Some((node_min, node_max)) = node_ref.operate(|e| e.min_max_version())
|
|
{
|
|
#[allow(clippy::absurd_extreme_comparisons)]
|
|
if node_min > MAX_VERSION || node_max < MIN_VERSION {
|
|
return Err(format!(
|
|
"can't talk to this node {} because version is unsupported: ({},{})",
|
|
via_node_id, node_min, node_max
|
|
))
|
|
.map_err(logthru_rpc!(warn));
|
|
}
|
|
cmp::min(node_max, MAX_VERSION)
|
|
} else {
|
|
MAX_VERSION
|
|
};
|
|
|
|
// Build the envelope to send
|
|
let out = self
|
|
.build_envelope(envelope_node_id, version, body)
|
|
.map_err(logthru_rpc!(error))?;
|
|
|
|
// Send the envelope via whatever means necessary
|
|
let send_data_kind = self.send_data(node_ref.clone(), out).await?;
|
|
|
|
// If we asked to relay from the start, then this is always indirect
|
|
if envelope_node_id != via_node_id {
|
|
return Ok(SendDataKind::GlobalIndirect);
|
|
}
|
|
Ok(send_data_kind)
|
|
}
|
|
|
|
// Called by the RPC handler when we want to issue an direct receipt
|
|
#[instrument(level = "trace", skip(self, rcpt_data), err)]
|
|
pub async fn send_out_of_band_receipt(
|
|
&self,
|
|
dial_info: DialInfo,
|
|
rcpt_data: Vec<u8>,
|
|
) -> Result<(), String> {
|
|
// Do we need to validate the outgoing receipt? Probably not
|
|
// because it is supposed to be opaque and the
|
|
// recipient/originator does the validation
|
|
// Also, in the case of an old 'version', returning the receipt
|
|
// should not be subject to our ability to decode it
|
|
|
|
// Send receipt directly
|
|
self.net()
|
|
.send_data_unbound_to_dial_info(dial_info, rcpt_data)
|
|
.await
|
|
}
|
|
|
|
// Figure out how to reach a node
|
|
#[instrument(level = "trace", skip(self), ret, err)]
|
|
fn get_contact_method(&self, mut target_node_ref: NodeRef) -> Result<ContactMethod, String> {
|
|
let routing_table = self.routing_table();
|
|
|
|
// Get our network class and protocol config
|
|
let our_network_class = self.get_network_class().unwrap_or(NetworkClass::Invalid);
|
|
let our_protocol_config = self.get_protocol_config().unwrap();
|
|
|
|
// Scope noderef down to protocols we can do outbound
|
|
if !target_node_ref.filter_protocols(our_protocol_config.outbound) {
|
|
return Ok(ContactMethod::Unreachable);
|
|
}
|
|
|
|
// Get the best matching local direct dial info if we have it
|
|
let opt_target_local_did =
|
|
target_node_ref.first_filtered_dial_info_detail(Some(RoutingDomain::LocalNetwork));
|
|
if let Some(target_local_did) = opt_target_local_did {
|
|
return Ok(ContactMethod::Direct(target_local_did.dial_info));
|
|
}
|
|
|
|
// Get the best match internet dial info if we have it
|
|
let opt_target_public_did =
|
|
target_node_ref.first_filtered_dial_info_detail(Some(RoutingDomain::PublicInternet));
|
|
if let Some(target_public_did) = opt_target_public_did {
|
|
// Do we need to signal before going inbound?
|
|
if !target_public_did.class.requires_signal() {
|
|
// Go direct without signaling
|
|
return Ok(ContactMethod::Direct(target_public_did.dial_info));
|
|
}
|
|
|
|
// Get the target's inbound relay, it must have one or it is not reachable
|
|
if let Some(inbound_relay_nr) = target_node_ref.relay() {
|
|
// Can we reach the inbound relay?
|
|
if inbound_relay_nr
|
|
.first_filtered_dial_info_detail(Some(RoutingDomain::PublicInternet))
|
|
.is_some()
|
|
{
|
|
// Can we receive anything inbound ever?
|
|
if matches!(our_network_class, NetworkClass::InboundCapable) {
|
|
// Get the best match dial info for an reverse inbound connection
|
|
let reverse_dif = DialInfoFilter::global().with_protocol_set(
|
|
target_node_ref.outbound_protocols().unwrap_or_default(),
|
|
);
|
|
if let Some(reverse_did) = routing_table.first_filtered_dial_info_detail(
|
|
Some(RoutingDomain::PublicInternet),
|
|
&reverse_dif,
|
|
) {
|
|
// Can we receive a direct reverse connection?
|
|
if !reverse_did.class.requires_signal() {
|
|
return Ok(ContactMethod::SignalReverse(
|
|
inbound_relay_nr,
|
|
target_node_ref,
|
|
));
|
|
}
|
|
}
|
|
|
|
// Does we and the target have outbound protocols to hole-punch?
|
|
if our_protocol_config.outbound.contains(ProtocolType::UDP)
|
|
&& target_node_ref
|
|
.outbound_protocols()
|
|
.unwrap_or_default()
|
|
.contains(ProtocolType::UDP)
|
|
{
|
|
// Do the target and self nodes have a direct udp dialinfo
|
|
let udp_dif =
|
|
DialInfoFilter::global().with_protocol_type(ProtocolType::UDP);
|
|
let mut udp_target_nr = target_node_ref.clone();
|
|
udp_target_nr.filter_protocols(ProtocolSet::only(ProtocolType::UDP));
|
|
let target_has_udp_dialinfo = target_node_ref
|
|
.first_filtered_dial_info_detail(Some(
|
|
RoutingDomain::PublicInternet,
|
|
))
|
|
.is_some();
|
|
let self_has_udp_dialinfo = routing_table
|
|
.first_filtered_dial_info_detail(
|
|
Some(RoutingDomain::PublicInternet),
|
|
&udp_dif,
|
|
)
|
|
.is_some();
|
|
if target_has_udp_dialinfo && self_has_udp_dialinfo {
|
|
return Ok(ContactMethod::SignalHolePunch(
|
|
inbound_relay_nr,
|
|
udp_target_nr,
|
|
));
|
|
}
|
|
}
|
|
// Otherwise we have to inbound relay
|
|
}
|
|
|
|
return Ok(ContactMethod::InboundRelay(inbound_relay_nr));
|
|
}
|
|
}
|
|
}
|
|
// If the other node is not inbound capable at all, it is using a full relay
|
|
else if let Some(target_inbound_relay_nr) = target_node_ref.relay() {
|
|
// Can we reach the full relay?
|
|
if target_inbound_relay_nr
|
|
.first_filtered_dial_info_detail(Some(RoutingDomain::PublicInternet))
|
|
.is_some()
|
|
{
|
|
return Ok(ContactMethod::InboundRelay(target_inbound_relay_nr));
|
|
}
|
|
}
|
|
|
|
// If we can't reach the node by other means, try our outbound relay if we have one
|
|
if let Some(relay_node) = self.relay_node() {
|
|
return Ok(ContactMethod::OutboundRelay(relay_node));
|
|
}
|
|
// Otherwise, we can't reach this node
|
|
debug!("unable to reach node {:?}", target_node_ref);
|
|
// trace!(
|
|
// "unable to reach node {:?}: {}",
|
|
// target_node_ref,
|
|
// target_node_ref.operate(|e| format!("{:#?}", e))
|
|
// );
|
|
Ok(ContactMethod::Unreachable)
|
|
}
|
|
|
|
// Send a reverse connection signal and wait for the return receipt over it
|
|
// Then send the data across the new connection
|
|
#[instrument(level = "trace", skip(self, data), err)]
|
|
pub async fn do_reverse_connect(
|
|
&self,
|
|
relay_nr: NodeRef,
|
|
target_nr: NodeRef,
|
|
data: Vec<u8>,
|
|
) -> Result<(), String> {
|
|
// Build a return receipt for the signal
|
|
let receipt_timeout =
|
|
ms_to_us(self.config.get().network.reverse_connection_receipt_time_ms);
|
|
let (receipt, eventual_value) = self
|
|
.generate_single_shot_receipt(receipt_timeout, [])
|
|
.map_err(map_to_string)?;
|
|
|
|
// Get our peer info
|
|
let peer_info = self.routing_table().get_own_peer_info();
|
|
|
|
// Issue the signal
|
|
let rpc = self.rpc_processor();
|
|
rpc.rpc_call_signal(
|
|
Destination::Relay(relay_nr.clone(), target_nr.node_id()),
|
|
None,
|
|
SignalInfo::ReverseConnect { receipt, peer_info },
|
|
)
|
|
.await
|
|
.map_err(logthru_net!("failed to send signal to {:?}", relay_nr))
|
|
.map_err(map_to_string)?;
|
|
// Wait for the return receipt
|
|
let inbound_nr = match eventual_value.await.take_value().unwrap() {
|
|
ReceiptEvent::ReturnedOutOfBand => {
|
|
return Err("reverse connect receipt should be returned in-band".to_owned());
|
|
}
|
|
ReceiptEvent::ReturnedInBand { inbound_noderef } => inbound_noderef,
|
|
ReceiptEvent::Expired => {
|
|
return Err(format!(
|
|
"reverse connect receipt expired from {:?}",
|
|
target_nr
|
|
));
|
|
}
|
|
ReceiptEvent::Cancelled => {
|
|
return Err(format!(
|
|
"reverse connect receipt cancelled from {:?}",
|
|
target_nr
|
|
));
|
|
}
|
|
};
|
|
|
|
// We expect the inbound noderef to be the same as the target noderef
|
|
// if they aren't the same, we should error on this and figure out what then hell is up
|
|
if target_nr != inbound_nr {
|
|
error!("unexpected noderef mismatch on reverse connect");
|
|
}
|
|
|
|
// And now use the existing connection to send over
|
|
if let Some(descriptor) = inbound_nr.last_connection().await {
|
|
match self
|
|
.net()
|
|
.send_data_to_existing_connection(descriptor, data)
|
|
.await?
|
|
{
|
|
None => Ok(()),
|
|
Some(_) => Err("unable to send over reverse connection".to_owned()),
|
|
}
|
|
} else {
|
|
Err("no reverse connection available".to_owned())
|
|
}
|
|
}
|
|
|
|
// Send a hole punch signal and do a negotiating ping and wait for the return receipt
|
|
// Then send the data across the new connection
|
|
#[instrument(level = "trace", skip(self, data), err)]
|
|
pub async fn do_hole_punch(
|
|
&self,
|
|
relay_nr: NodeRef,
|
|
target_nr: NodeRef,
|
|
data: Vec<u8>,
|
|
) -> Result<(), String> {
|
|
// Ensure we are filtered down to UDP (the only hole punch protocol supported today)
|
|
assert!(relay_nr
|
|
.filter_ref()
|
|
.map(|dif| dif.protocol_set == ProtocolSet::only(ProtocolType::UDP))
|
|
.unwrap_or_default());
|
|
assert!(target_nr
|
|
.filter_ref()
|
|
.map(|dif| dif.protocol_set == ProtocolSet::only(ProtocolType::UDP))
|
|
.unwrap_or_default());
|
|
|
|
// Build a return receipt for the signal
|
|
let receipt_timeout =
|
|
ms_to_us(self.config.get().network.reverse_connection_receipt_time_ms);
|
|
let (receipt, eventual_value) = self
|
|
.generate_single_shot_receipt(receipt_timeout, [])
|
|
.map_err(map_to_string)?;
|
|
|
|
// Get our peer info
|
|
let peer_info = self.routing_table().get_own_peer_info();
|
|
|
|
// Get the udp direct dialinfo for the hole punch
|
|
let hole_punch_did = target_nr
|
|
.first_filtered_dial_info_detail(Some(RoutingDomain::PublicInternet))
|
|
.ok_or_else(|| "No hole punch capable dialinfo found for node".to_owned())?;
|
|
|
|
// Do our half of the hole punch by sending an empty packet
|
|
// Both sides will do this and then the receipt will get sent over the punched hole
|
|
self.net()
|
|
.send_data_to_dial_info(hole_punch_did.dial_info, Vec::new())
|
|
.await?;
|
|
|
|
// Issue the signal
|
|
let rpc = self.rpc_processor();
|
|
rpc.rpc_call_signal(
|
|
Destination::Relay(relay_nr.clone(), target_nr.node_id()),
|
|
None,
|
|
SignalInfo::HolePunch { receipt, peer_info },
|
|
)
|
|
.await
|
|
.map_err(logthru_net!("failed to send signal to {:?}", relay_nr))
|
|
.map_err(map_to_string)?;
|
|
|
|
// Wait for the return receipt
|
|
let inbound_nr = match eventual_value.await.take_value().unwrap() {
|
|
ReceiptEvent::ReturnedOutOfBand => {
|
|
return Err("hole punch receipt should be returned in-band".to_owned());
|
|
}
|
|
ReceiptEvent::ReturnedInBand { inbound_noderef } => inbound_noderef,
|
|
ReceiptEvent::Expired => {
|
|
return Err(format!("hole punch receipt expired from {}", target_nr));
|
|
}
|
|
ReceiptEvent::Cancelled => {
|
|
return Err(format!("hole punch receipt cancelled from {}", target_nr));
|
|
}
|
|
};
|
|
|
|
// We expect the inbound noderef to be the same as the target noderef
|
|
// if they aren't the same, we should error on this and figure out what then hell is up
|
|
if target_nr != inbound_nr {
|
|
return Err(format!(
|
|
"unexpected noderef mismatch on hole punch {}, expected {}",
|
|
inbound_nr, target_nr
|
|
));
|
|
}
|
|
|
|
// And now use the existing connection to send over
|
|
if let Some(descriptor) = inbound_nr.last_connection().await {
|
|
match self
|
|
.net()
|
|
.send_data_to_existing_connection(descriptor, data)
|
|
.await?
|
|
{
|
|
None => Ok(()),
|
|
Some(_) => Err("unable to send over hole punch".to_owned()),
|
|
}
|
|
} else {
|
|
Err("no hole punch available".to_owned())
|
|
}
|
|
}
|
|
|
|
// Send raw data to a node
|
|
//
|
|
// We may not have dial info for a node, but have an existing connection for it
|
|
// because an inbound connection happened first, and no FindNodeQ has happened to that
|
|
// node yet to discover its dial info. The existing connection should be tried first
|
|
// in this case.
|
|
//
|
|
// Sending to a node requires determining a NetworkClass compatible mechanism
|
|
//
|
|
pub fn send_data(
|
|
&self,
|
|
node_ref: NodeRef,
|
|
data: Vec<u8>,
|
|
) -> SystemPinBoxFuture<Result<SendDataKind, String>> {
|
|
let this = self.clone();
|
|
Box::pin(async move {
|
|
// First try to send data to the last socket we've seen this peer on
|
|
let data = if let Some(descriptor) = node_ref.last_connection().await {
|
|
match this
|
|
.net()
|
|
.send_data_to_existing_connection(descriptor, data)
|
|
.await?
|
|
{
|
|
None => {
|
|
return Ok(if descriptor.matches_peer_scope(PeerScope::Local) {
|
|
SendDataKind::LocalDirect
|
|
} else {
|
|
SendDataKind::GlobalDirect
|
|
});
|
|
}
|
|
Some(d) => d,
|
|
}
|
|
} else {
|
|
data
|
|
};
|
|
|
|
log_net!("send_data via dialinfo to {:?}", node_ref);
|
|
// If we don't have last_connection, try to reach out to the peer via its dial info
|
|
match this
|
|
.get_contact_method(node_ref.clone())
|
|
.map_err(logthru_net!(debug))
|
|
.map(logthru_net!("get_contact_method for {:?}", node_ref))?
|
|
{
|
|
ContactMethod::OutboundRelay(relay_nr) | ContactMethod::InboundRelay(relay_nr) => {
|
|
this.send_data(relay_nr, data)
|
|
.await
|
|
.map(|_| SendDataKind::GlobalIndirect)
|
|
}
|
|
ContactMethod::Direct(dial_info) => {
|
|
let send_data_kind = if dial_info.is_local() {
|
|
SendDataKind::LocalDirect
|
|
} else {
|
|
SendDataKind::GlobalDirect
|
|
};
|
|
this.net()
|
|
.send_data_to_dial_info(dial_info, data)
|
|
.await
|
|
.map(|_| send_data_kind)
|
|
}
|
|
ContactMethod::SignalReverse(relay_nr, target_node_ref) => this
|
|
.do_reverse_connect(relay_nr, target_node_ref, data)
|
|
.await
|
|
.map(|_| SendDataKind::GlobalDirect),
|
|
ContactMethod::SignalHolePunch(relay_nr, target_node_ref) => this
|
|
.do_hole_punch(relay_nr, target_node_ref, data)
|
|
.await
|
|
.map(|_| SendDataKind::GlobalDirect),
|
|
ContactMethod::Unreachable => Err("Can't send to this node".to_owned()),
|
|
}
|
|
.map_err(logthru_net!(debug))
|
|
})
|
|
}
|
|
|
|
// Direct bootstrap request handler (separate fallback mechanism from cheaper TXT bootstrap mechanism)
|
|
async fn handle_boot_request(&self, descriptor: ConnectionDescriptor) -> Result<(), String> {
|
|
let routing_table = self.routing_table();
|
|
|
|
// Get a bunch of nodes with the various
|
|
let bootstrap_nodes = routing_table.find_bootstrap_nodes_filtered(2);
|
|
|
|
// Serialize out peer info
|
|
let bootstrap_peerinfo: Vec<PeerInfo> = bootstrap_nodes
|
|
.iter()
|
|
.filter_map(|b| b.peer_info())
|
|
.collect();
|
|
let json_bytes = serialize_json(bootstrap_peerinfo).as_bytes().to_vec();
|
|
|
|
// Reply with a chunk of signed routing table
|
|
match self
|
|
.net()
|
|
.send_data_to_existing_connection(descriptor, json_bytes)
|
|
.await?
|
|
{
|
|
None => {
|
|
// Bootstrap reply was sent
|
|
Ok(())
|
|
}
|
|
Some(_) => Err("bootstrap reply could not be sent".to_owned()),
|
|
}
|
|
}
|
|
|
|
// Direct bootstrap request
|
|
pub async fn boot_request(&self, dial_info: DialInfo) -> Result<Vec<PeerInfo>, String> {
|
|
let timeout_ms = {
|
|
let c = self.config.get();
|
|
c.network.rpc.timeout_ms
|
|
};
|
|
// Send boot magic to requested peer address
|
|
let data = BOOT_MAGIC.to_vec();
|
|
let out_data: Vec<u8> = self
|
|
.net()
|
|
.send_recv_data_unbound_to_dial_info(dial_info, data, timeout_ms)
|
|
.await?;
|
|
|
|
let bootstrap_peerinfo: Vec<PeerInfo> =
|
|
deserialize_json(std::str::from_utf8(&out_data).map_err(map_to_string)?)
|
|
.map_err(map_to_string)?;
|
|
|
|
Ok(bootstrap_peerinfo)
|
|
}
|
|
|
|
// Called when a packet potentially containing an RPC envelope is received by a low-level
|
|
// network protocol handler. Processes the envelope, authenticates and decrypts the RPC message
|
|
// and passes it to the RPC handler
|
|
#[instrument(level="trace", err, skip(self, data), fields(data.len = data.len()))]
|
|
async fn on_recv_envelope(
|
|
&self,
|
|
data: &[u8],
|
|
descriptor: ConnectionDescriptor,
|
|
) -> Result<bool, String> {
|
|
log_net!(
|
|
"envelope of {} bytes received from {:?}",
|
|
data.len(),
|
|
descriptor
|
|
);
|
|
|
|
// Network accounting
|
|
self.stats_packet_rcvd(descriptor.remote_address().to_ip_addr(), data.len() as u64);
|
|
|
|
// Ensure we can read the magic number
|
|
if data.len() < 4 {
|
|
return Err("short packet".to_owned());
|
|
}
|
|
|
|
// Is this a direct bootstrap request instead of an envelope?
|
|
if data[0..4] == *BOOT_MAGIC {
|
|
self.handle_boot_request(descriptor).await?;
|
|
return Ok(true);
|
|
}
|
|
|
|
// Is this an out-of-band receipt instead of an envelope?
|
|
if data[0..4] == *RECEIPT_MAGIC {
|
|
self.handle_out_of_band_receipt(data).await?;
|
|
return Ok(true);
|
|
}
|
|
|
|
// Decode envelope header (may fail signature validation)
|
|
let envelope = Envelope::from_signed_data(data).map_err(|_| {
|
|
format!(
|
|
"envelope failed to decode from {:?}: {} bytes",
|
|
descriptor,
|
|
data.len()
|
|
)
|
|
})?;
|
|
|
|
// Get routing table and rpc processor
|
|
let (routing_table, rpc) = {
|
|
let inner = self.inner.lock();
|
|
(
|
|
inner.routing_table.as_ref().unwrap().clone(),
|
|
inner.components.as_ref().unwrap().rpc_processor.clone(),
|
|
)
|
|
};
|
|
|
|
// Get timestamp range
|
|
let (tsbehind, tsahead) = {
|
|
let c = self.config.get();
|
|
(
|
|
c.network.rpc.max_timestamp_behind_ms.map(ms_to_us),
|
|
c.network.rpc.max_timestamp_ahead_ms.map(ms_to_us),
|
|
)
|
|
};
|
|
|
|
// Validate timestamp isn't too old
|
|
let ts = intf::get_timestamp();
|
|
let ets = envelope.get_timestamp();
|
|
if let Some(tsbehind) = tsbehind {
|
|
if tsbehind > 0 && (ts > ets && ts - ets > tsbehind) {
|
|
return Err(format!(
|
|
"envelope time was too far in the past: {}ms ",
|
|
timestamp_to_secs(ts - ets) * 1000f64
|
|
));
|
|
}
|
|
}
|
|
if let Some(tsahead) = tsahead {
|
|
if tsahead > 0 && (ts < ets && ets - ts > tsahead) {
|
|
return Err(format!(
|
|
"envelope time was too far in the future: {}ms",
|
|
timestamp_to_secs(ets - ts) * 1000f64
|
|
));
|
|
}
|
|
}
|
|
|
|
// Peek at header and see if we need to relay this
|
|
// If the recipient id is not our node id, then it needs relaying
|
|
let sender_id = envelope.get_sender_id();
|
|
let recipient_id = envelope.get_recipient_id();
|
|
if recipient_id != routing_table.node_id() {
|
|
// See if the source node is allowed to resolve nodes
|
|
// This is a costly operation, so only outbound-relay permitted
|
|
// nodes are allowed to do this, for example PWA users
|
|
|
|
let relay_nr = if self.check_client_whitelist(sender_id) {
|
|
// Full relay allowed, do a full resolve_node
|
|
rpc.resolve_node(recipient_id).await.map_err(|e| {
|
|
format!(
|
|
"failed to resolve recipient node for relay, dropping outbound relayed packet...: {:?}",
|
|
e
|
|
)
|
|
})?
|
|
} else {
|
|
// If this is not a node in the client whitelist, only allow inbound relay
|
|
// which only performs a lightweight lookup before passing the packet back out
|
|
|
|
// See if we have the node in our routing table
|
|
// We should, because relays are chosen by nodes that have established connectivity and
|
|
// should be mutually in each others routing tables. The node needing the relay will be
|
|
// pinging this node regularly to keep itself in the routing table
|
|
routing_table.lookup_node_ref(recipient_id).ok_or_else(|| {
|
|
format!(
|
|
"Inbound relay asked for recipient not in routing table: {}",
|
|
recipient_id
|
|
)
|
|
})?
|
|
};
|
|
|
|
// Relay the packet to the desired destination
|
|
self.send_data(relay_nr, data.to_vec())
|
|
.await
|
|
.map_err(|e| format!("failed to forward envelope: {}", e))?;
|
|
// Inform caller that we dealt with the envelope, but did not process it locally
|
|
return Ok(false);
|
|
}
|
|
|
|
// DH to get decryption key (cached)
|
|
let node_id_secret = routing_table.node_id_secret();
|
|
|
|
// Decrypt the envelope body
|
|
// xxx: punish nodes that send messages that fail to decrypt eventually
|
|
let body = envelope
|
|
.decrypt_body(self.crypto(), data, &node_id_secret)
|
|
.map_err(|_| "failed to decrypt envelope body".to_owned())?;
|
|
|
|
// Cache the envelope information in the routing table
|
|
let source_noderef = routing_table
|
|
.register_node_with_existing_connection(envelope.get_sender_id(), descriptor, ts)
|
|
.map_err(|e| format!("node id registration failed: {}", e))?;
|
|
source_noderef.operate_mut(|e| e.set_min_max_version(envelope.get_min_max_version()));
|
|
|
|
// xxx: deal with spoofing and flooding here?
|
|
|
|
// Pass message to RPC system
|
|
rpc.enqueue_message(envelope, body, source_noderef)
|
|
.map_err(|e| format!("enqueing rpc message failed: {}", e))?;
|
|
|
|
// Inform caller that we dealt with the envelope locally
|
|
Ok(true)
|
|
}
|
|
|
|
// Keep relays assigned and accessible
|
|
#[instrument(level = "trace", skip(self), err)]
|
|
async fn relay_management_task_routine(
|
|
self,
|
|
stop_token: StopToken,
|
|
_last_ts: u64,
|
|
cur_ts: u64,
|
|
) -> Result<(), String> {
|
|
// Get our node's current node info and network class and do the right thing
|
|
let routing_table = self.routing_table();
|
|
let node_info = routing_table.get_own_node_info();
|
|
let network_class = self.get_network_class();
|
|
let mut node_info_changed = false;
|
|
|
|
// Do we know our network class yet?
|
|
if let Some(network_class) = network_class {
|
|
// If we already have a relay, see if it is dead, or if we don't need it any more
|
|
let has_relay = {
|
|
let mut inner = self.inner.lock();
|
|
if let Some(relay_node) = inner.relay_node.clone() {
|
|
let state = relay_node.operate(|e| e.state(cur_ts));
|
|
// Relay node is dead or no longer needed
|
|
if matches!(state, BucketEntryState::Dead) {
|
|
info!("Relay node died, dropping relay {}", relay_node);
|
|
inner.relay_node = None;
|
|
node_info_changed = true;
|
|
false
|
|
} else if !node_info.requires_relay() {
|
|
info!(
|
|
"Relay node no longer required, dropping relay {}",
|
|
relay_node
|
|
);
|
|
inner.relay_node = None;
|
|
node_info_changed = true;
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
} else {
|
|
false
|
|
}
|
|
};
|
|
|
|
// Do we need a relay?
|
|
if !has_relay && node_info.requires_relay() {
|
|
// Do we need an outbound relay?
|
|
if network_class.outbound_wants_relay() {
|
|
// The outbound relay is the host of the PWA
|
|
if let Some(outbound_relay_peerinfo) = intf::get_outbound_relay_peer().await {
|
|
let mut inner = self.inner.lock();
|
|
|
|
// Register new outbound relay
|
|
let nr = routing_table.register_node_with_signed_node_info(
|
|
outbound_relay_peerinfo.node_id.key,
|
|
outbound_relay_peerinfo.signed_node_info,
|
|
)?;
|
|
info!("Outbound relay node selected: {}", nr);
|
|
inner.relay_node = Some(nr);
|
|
node_info_changed = true;
|
|
}
|
|
// Otherwise we must need an inbound relay
|
|
} else {
|
|
// Find a node in our routing table that is an acceptable inbound relay
|
|
if let Some(nr) = routing_table.find_inbound_relay(cur_ts) {
|
|
let mut inner = self.inner.lock();
|
|
info!("Inbound relay node selected: {}", nr);
|
|
inner.relay_node = Some(nr);
|
|
node_info_changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Re-send our node info if we selected a relay
|
|
if node_info_changed {
|
|
self.routing_table().send_node_info_updates().await;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Compute transfer statistics for the low level network
|
|
#[instrument(level = "trace", skip(self), err)]
|
|
async fn rolling_transfers_task_routine(
|
|
self,
|
|
stop_token: StopToken,
|
|
last_ts: u64,
|
|
cur_ts: u64,
|
|
) -> Result<(), String> {
|
|
// log_net!("--- network manager rolling_transfers task");
|
|
{
|
|
let inner = &mut *self.inner.lock();
|
|
|
|
// Roll the low level network transfer stats for our address
|
|
inner
|
|
.stats
|
|
.self_stats
|
|
.transfer_stats_accounting
|
|
.roll_transfers(last_ts, cur_ts, &mut inner.stats.self_stats.transfer_stats);
|
|
|
|
// Roll all per-address transfers
|
|
let mut dead_addrs: HashSet<PerAddressStatsKey> = HashSet::new();
|
|
for (addr, stats) in &mut inner.stats.per_address_stats {
|
|
stats.transfer_stats_accounting.roll_transfers(
|
|
last_ts,
|
|
cur_ts,
|
|
&mut stats.transfer_stats,
|
|
);
|
|
|
|
// While we're here, lets see if this address has timed out
|
|
if cur_ts - stats.last_seen_ts >= IPADDR_MAX_INACTIVE_DURATION_US {
|
|
// it's dead, put it in the dead list
|
|
dead_addrs.insert(*addr);
|
|
}
|
|
}
|
|
|
|
// Remove the dead addresses from our tables
|
|
for da in &dead_addrs {
|
|
inner.stats.per_address_stats.remove(da);
|
|
}
|
|
}
|
|
|
|
// Send update
|
|
self.send_network_update();
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Callbacks from low level network for statistics gathering
|
|
pub fn stats_packet_sent(&self, addr: IpAddr, bytes: u64) {
|
|
let inner = &mut *self.inner.lock();
|
|
inner
|
|
.stats
|
|
.self_stats
|
|
.transfer_stats_accounting
|
|
.add_up(bytes);
|
|
inner
|
|
.stats
|
|
.per_address_stats
|
|
.entry(PerAddressStatsKey(addr))
|
|
.or_insert(PerAddressStats::default())
|
|
.transfer_stats_accounting
|
|
.add_up(bytes);
|
|
}
|
|
|
|
pub fn stats_packet_rcvd(&self, addr: IpAddr, bytes: u64) {
|
|
let inner = &mut *self.inner.lock();
|
|
inner
|
|
.stats
|
|
.self_stats
|
|
.transfer_stats_accounting
|
|
.add_down(bytes);
|
|
inner
|
|
.stats
|
|
.per_address_stats
|
|
.entry(PerAddressStatsKey(addr))
|
|
.or_insert(PerAddressStats::default())
|
|
.transfer_stats_accounting
|
|
.add_down(bytes);
|
|
}
|
|
|
|
// Get stats
|
|
pub fn get_stats(&self) -> NetworkManagerStats {
|
|
let inner = self.inner.lock();
|
|
inner.stats.clone()
|
|
}
|
|
|
|
fn get_veilid_state_inner(inner: &NetworkManagerInner) -> VeilidStateNetwork {
|
|
if inner.components.is_some() && inner.components.as_ref().unwrap().net.is_started() {
|
|
VeilidStateNetwork {
|
|
started: true,
|
|
bps_down: inner.stats.self_stats.transfer_stats.down.average,
|
|
bps_up: inner.stats.self_stats.transfer_stats.up.average,
|
|
}
|
|
} else {
|
|
VeilidStateNetwork {
|
|
started: false,
|
|
bps_down: 0,
|
|
bps_up: 0,
|
|
}
|
|
}
|
|
}
|
|
pub fn get_veilid_state(&self) -> VeilidStateNetwork {
|
|
let inner = self.inner.lock();
|
|
Self::get_veilid_state_inner(&*inner)
|
|
}
|
|
|
|
fn send_network_update(&self) {
|
|
let (update_cb, state) = {
|
|
let inner = self.inner.lock();
|
|
let update_cb = inner.update_callback.clone();
|
|
if update_cb.is_none() {
|
|
return;
|
|
}
|
|
let state = Self::get_veilid_state_inner(&*inner);
|
|
(update_cb.unwrap(), state)
|
|
};
|
|
update_cb(VeilidUpdate::Network(state));
|
|
}
|
|
|
|
// Determine if a local IP address has changed
|
|
// this means we should restart the low level network and and recreate all of our dial info
|
|
// Wait until we have received confirmation from N different peers
|
|
pub async fn report_local_socket_address(
|
|
&self,
|
|
_socket_address: SocketAddress,
|
|
_reporting_peer: NodeRef,
|
|
) {
|
|
// XXX: Nothing here yet.
|
|
}
|
|
|
|
// Determine if a global IP address has changed
|
|
// this means we should recreate our public dial info if it is not static and rediscover it
|
|
// Wait until we have received confirmation from N different peers
|
|
pub async fn report_global_socket_address(
|
|
&self,
|
|
socket_address: SocketAddress,
|
|
reporting_peer: NodeRef,
|
|
) {
|
|
let (net, routing_table) = {
|
|
let mut inner = self.inner.lock();
|
|
|
|
// Store the reported address
|
|
inner
|
|
.public_address_check_cache
|
|
.insert(reporting_peer.node_id(), socket_address);
|
|
|
|
let net = inner.components.as_ref().unwrap().net.clone();
|
|
let routing_table = inner.routing_table.as_ref().unwrap().clone();
|
|
(net, routing_table)
|
|
};
|
|
let network_class = net.get_network_class().unwrap_or(NetworkClass::Invalid);
|
|
|
|
// Determine if our external address has likely changed
|
|
let needs_public_address_detection =
|
|
if matches!(network_class, NetworkClass::InboundCapable) {
|
|
// Get current external ip/port from registered global dialinfo
|
|
let current_addresses: BTreeSet<SocketAddress> = routing_table
|
|
.all_filtered_dial_info_details(
|
|
Some(RoutingDomain::PublicInternet),
|
|
&DialInfoFilter::all(),
|
|
)
|
|
.iter()
|
|
.map(|did| did.dial_info.socket_address())
|
|
.collect();
|
|
|
|
// If we are inbound capable, but start to see inconsistent socket addresses from multiple reporting peers
|
|
// then we zap the network class and re-detect it
|
|
let inner = self.inner.lock();
|
|
let mut inconsistencies = 0;
|
|
let mut changed = false;
|
|
// Iteration goes from most recent to least recent node/address pair
|
|
for (_, a) in &inner.public_address_check_cache {
|
|
if !current_addresses.contains(a) {
|
|
inconsistencies += 1;
|
|
if inconsistencies >= GLOBAL_ADDRESS_CHANGE_DETECTION_COUNT {
|
|
changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
changed
|
|
} else {
|
|
// If we are currently outbound only, we don't have any public dial info
|
|
// but if we are starting to see consistent socket address from multiple reporting peers
|
|
// then we may be become inbound capable, so zap the network class so we can re-detect it and any public dial info
|
|
|
|
let inner = self.inner.lock();
|
|
let mut consistencies = 0;
|
|
let mut consistent = false;
|
|
let mut current_address = Option::<SocketAddress>::None;
|
|
// Iteration goes from most recent to least recent node/address pair
|
|
for (_, a) in &inner.public_address_check_cache {
|
|
if let Some(current_address) = current_address {
|
|
if current_address == *a {
|
|
consistencies += 1;
|
|
if consistencies >= GLOBAL_ADDRESS_CHANGE_DETECTION_COUNT {
|
|
consistent = true;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
current_address = Some(*a);
|
|
}
|
|
}
|
|
consistent
|
|
};
|
|
|
|
if needs_public_address_detection {
|
|
// Reset the address check cache now so we can start detecting fresh
|
|
let mut inner = self.inner.lock();
|
|
inner.public_address_check_cache.clear();
|
|
|
|
// Reset the network class and dial info so we can re-detect it
|
|
routing_table.clear_dial_info_details(RoutingDomain::PublicInternet);
|
|
net.reset_network_class();
|
|
}
|
|
}
|
|
}
|