veilid/veilid-core/src/routing_table/find_nodes.rs
2022-08-08 20:42:27 -04:00

585 lines
21 KiB
Rust

use super::*;
use crate::dht::*;
use crate::xx::*;
use crate::*;
impl RoutingTable {
// Makes a filter that finds nodes with a matching inbound dialinfo
pub fn make_inbound_dial_info_entry_filter(
dial_info_filter: DialInfoFilter,
) -> impl FnMut(&BucketEntryInner) -> bool {
// does it have matching public dial info?
move |e| {
e.node_info()
.map(|n| {
n.first_filtered_dial_info_detail(|did| did.matches_filter(&dial_info_filter))
.is_some()
})
.unwrap_or(false)
}
}
// Makes a filter that finds nodes capable of dialing a particular outbound dialinfo
pub fn make_outbound_dial_info_entry_filter(
dial_info: DialInfo,
) -> impl FnMut(&BucketEntryInner) -> bool {
// does the node's outbound capabilities match the dialinfo?
move |e| {
e.node_info()
.map(|n| {
let mut dif = DialInfoFilter::all();
dif = dif.with_protocol_type_set(n.outbound_protocols);
dif = dif.with_address_type_set(n.address_types);
dial_info.matches_filter(&dif)
})
.unwrap_or(false)
}
}
// Make a filter that wraps another filter
pub fn combine_filters<F, G>(mut f1: F, mut f2: G) -> impl FnMut(&BucketEntryInner) -> bool
where
F: FnMut(&BucketEntryInner) -> bool,
G: FnMut(&BucketEntryInner) -> bool,
{
move |e| {
if !f1(e) {
return false;
}
if !f2(e) {
return false;
}
true
}
}
// Retrieve the fastest nodes in the routing table matching an entry filter
pub fn find_fast_public_nodes_filtered<F>(
&self,
node_count: usize,
mut entry_filter: F,
) -> Vec<NodeRef>
where
F: FnMut(&BucketEntryInner) -> bool,
{
self.find_fastest_nodes(
// count
node_count,
// filter
Some(move |_k: DHTKey, v: Option<Arc<BucketEntry>>| {
let entry = v.unwrap();
entry.with(|e| {
// skip nodes on our local network here
if e.local_node_info().is_some() {
return false;
}
// skip nodes that dont match entry filter
entry_filter(e)
})
}),
// transform
|k: DHTKey, v: Option<Arc<BucketEntry>>| {
NodeRef::new(self.clone(), k, v.unwrap().clone(), None)
},
)
}
// Retrieve up to N of each type of protocol capable nodes
pub fn find_bootstrap_nodes_filtered(&self, max_per_type: usize) -> Vec<NodeRef> {
let protocol_types = vec![
ProtocolType::UDP,
ProtocolType::TCP,
ProtocolType::WS,
ProtocolType::WSS,
];
let mut nodes_proto_v4 = vec![0usize, 0usize, 0usize, 0usize];
let mut nodes_proto_v6 = vec![0usize, 0usize, 0usize, 0usize];
self.find_fastest_nodes(
// count
protocol_types.len() * 2 * max_per_type,
// filter
Some(move |_k: DHTKey, v: Option<Arc<BucketEntry>>| {
let entry = v.unwrap();
entry.with(|e| {
// skip nodes on our local network here
if e.local_node_info().is_some() {
return false;
}
// does it have some dial info we need?
let filter = |n: NodeInfo| {
let mut keep = false;
for did in n.dial_info_detail_list {
if did.dial_info.is_global() {
if matches!(did.dial_info.address_type(), AddressType::IPV4) {
for (n, protocol_type) in protocol_types.iter().enumerate() {
if nodes_proto_v4[n] < max_per_type
&& did.dial_info.protocol_type() == *protocol_type
{
nodes_proto_v4[n] += 1;
keep = true;
}
}
} else if matches!(did.dial_info.address_type(), AddressType::IPV6)
{
for (n, protocol_type) in protocol_types.iter().enumerate() {
if nodes_proto_v6[n] < max_per_type
&& did.dial_info.protocol_type() == *protocol_type
{
nodes_proto_v6[n] += 1;
keep = true;
}
}
}
}
}
keep
};
e.node_info().map(filter).unwrap_or(false)
})
}),
// transform
|k: DHTKey, v: Option<Arc<BucketEntry>>| {
NodeRef::new(self.clone(), k, v.unwrap().clone(), None)
},
)
}
// Get our own node's peer info (public node info) so we can share it with other nodes
pub fn get_own_peer_info(&self) -> PeerInfo {
PeerInfo::new(NodeId::new(self.node_id()), self.get_own_signed_node_info())
}
pub fn get_own_signed_node_info(&self) -> SignedNodeInfo {
let node_id = NodeId::new(self.node_id());
let secret = self.node_id_secret();
SignedNodeInfo::with_secret(self.get_own_node_info(), node_id, &secret).unwrap()
}
pub fn get_own_node_info(&self) -> NodeInfo {
let netman = self.network_manager();
let relay_node = netman.relay_node();
let pc = netman.get_protocol_config();
NodeInfo {
network_class: netman.get_network_class().unwrap_or(NetworkClass::Invalid),
outbound_protocols: pc.outbound,
address_types: pc.family_global,
min_version: MIN_VERSION,
max_version: MAX_VERSION,
dial_info_detail_list: self.dial_info_details(RoutingDomain::PublicInternet),
relay_peer_info: relay_node.and_then(|rn| rn.peer_info().map(Box::new)),
}
}
pub fn filter_has_valid_signed_node_info(
v: Option<Arc<BucketEntry>>,
own_peer_info_is_valid: bool,
) -> bool {
match v {
None => own_peer_info_is_valid,
Some(entry) => entry.with(|e| e.has_valid_signed_node_info()),
}
}
pub fn transform_to_peer_info(
k: DHTKey,
v: Option<Arc<BucketEntry>>,
own_peer_info: &PeerInfo,
) -> PeerInfo {
match v {
None => own_peer_info.clone(),
Some(entry) => entry.with(|e| e.peer_info(k).unwrap()),
}
}
pub fn find_peers_with_sort_and_filter<F, C, T, O>(
&self,
node_count: usize,
cur_ts: u64,
mut filter: F,
compare: C,
mut transform: T,
) -> Vec<O>
where
F: FnMut(DHTKey, Option<Arc<BucketEntry>>) -> bool,
C: FnMut(
&(DHTKey, Option<Arc<BucketEntry>>),
&(DHTKey, Option<Arc<BucketEntry>>),
) -> core::cmp::Ordering,
T: FnMut(DHTKey, Option<Arc<BucketEntry>>) -> O,
{
let inner = self.inner.read();
let self_node_id = inner.node_id;
// collect all the nodes for sorting
let mut nodes =
Vec::<(DHTKey, Option<Arc<BucketEntry>>)>::with_capacity(inner.bucket_entry_count + 1);
// add our own node (only one of there with the None entry)
if filter(self_node_id, None) {
nodes.push((self_node_id, None));
}
// add all nodes from buckets
Self::with_entries(&*inner, cur_ts, BucketEntryState::Unreliable, |k, v| {
// Apply filter
if filter(k, Some(v.clone())) {
nodes.push((k, Some(v.clone())));
}
Option::<()>::None
});
// sort by preference for returning nodes
nodes.sort_by(compare);
// return transformed vector for filtered+sorted nodes
let cnt = usize::min(node_count, nodes.len());
let mut out = Vec::<O>::with_capacity(cnt);
for node in nodes {
let val = transform(node.0, node.1);
out.push(val);
}
out
}
pub fn find_fastest_nodes<T, F, O>(
&self,
node_count: usize,
mut filter: Option<F>,
transform: T,
) -> Vec<O>
where
F: FnMut(DHTKey, Option<Arc<BucketEntry>>) -> bool,
T: FnMut(DHTKey, Option<Arc<BucketEntry>>) -> O,
{
let cur_ts = intf::get_timestamp();
let out = self.find_peers_with_sort_and_filter(
node_count,
cur_ts,
// filter
|k, v| {
if let Some(entry) = &v {
// always filter out dead nodes
if entry.with(|e| e.state(cur_ts) == BucketEntryState::Dead) {
false
} else {
filter.as_mut().map(|f| f(k, v)).unwrap_or(true)
}
} else {
// always filter out self peer, as it is irrelevant to the 'fastest nodes' search
false
}
},
// sort
|(a_key, a_entry), (b_key, b_entry)| {
// same nodes are always the same
if a_key == b_key {
return core::cmp::Ordering::Equal;
}
// our own node always comes last (should not happen, here for completeness)
if a_entry.is_none() {
return core::cmp::Ordering::Greater;
}
if b_entry.is_none() {
return core::cmp::Ordering::Less;
}
// reliable nodes come first
let ae = a_entry.as_ref().unwrap();
let be = b_entry.as_ref().unwrap();
ae.with(|ae| {
be.with(|be| {
let ra = ae.check_reliable(cur_ts);
let rb = be.check_reliable(cur_ts);
if ra != rb {
if ra {
return core::cmp::Ordering::Less;
} else {
return core::cmp::Ordering::Greater;
}
}
// latency is the next metric, closer nodes first
let a_latency = match ae.peer_stats().latency.as_ref() {
None => {
// treat unknown latency as slow
return core::cmp::Ordering::Greater;
}
Some(l) => l,
};
let b_latency = match be.peer_stats().latency.as_ref() {
None => {
// treat unknown latency as slow
return core::cmp::Ordering::Less;
}
Some(l) => l,
};
// Sort by average latency
a_latency.average.cmp(&b_latency.average)
})
})
},
// transform,
transform,
);
out
}
pub fn find_closest_nodes<F, T, O>(
&self,
node_id: DHTKey,
mut filter: Option<F>,
mut transform: T,
) -> Vec<O>
where
T: FnMut(DHTKey, Option<Arc<BucketEntry>>) -> O,
F: FnMut(DHTKey, Option<Arc<BucketEntry>>) -> bool,
{
let cur_ts = intf::get_timestamp();
let node_count = {
let c = self.config.get();
c.network.dht.max_find_node_count as usize
};
let out = self.find_peers_with_sort_and_filter(
node_count,
cur_ts,
// filter
|k, v| filter.as_mut().map(|f| f(k, v)).unwrap_or(true),
// sort
|(a_key, a_entry), (b_key, b_entry)| {
// same nodes are always the same
if a_key == b_key {
return core::cmp::Ordering::Equal;
}
// reliable nodes come first, pessimistically treating our own node as unreliable
let ra = a_entry
.as_ref()
.map_or(false, |x| x.with(|x| x.check_reliable(cur_ts)));
let rb = b_entry
.as_ref()
.map_or(false, |x| x.with(|x| x.check_reliable(cur_ts)));
if ra != rb {
if ra {
return core::cmp::Ordering::Less;
} else {
return core::cmp::Ordering::Greater;
}
}
// distance is the next metric, closer nodes first
let da = distance(a_key, &node_id);
let db = distance(b_key, &node_id);
da.cmp(&db)
},
// transform,
&mut transform,
);
log_rtab!(">> find_closest_nodes: node count = {}", out.len());
out
}
fn make_relay_node_filter(&self) -> impl Fn(&BucketEntryInner) -> bool {
// Get all our outbound protocol/address types
let protocol_config = self.network_manager().get_protocol_config();
let outbound_dif = self
.network_manager()
.get_outbound_dial_info_filter(RoutingDomain::PublicInternet);
move |e: &BucketEntryInner| {
// Ensure this node is not on our local network
let has_local_dial_info = e
.local_node_info()
.map(|l| l.has_dial_info())
.unwrap_or(false);
if has_local_dial_info {
return false;
}
// Disqualify nodes that don't have all our outbound protocol types
let can_serve_as_relay = e
.node_info()
.map(|n| {
let dids =
n.all_filtered_dial_info_details(|did| did.matches_filter(&outbound_dif));
for pt in protocol_config.outbound {
for at in protocol_config.family_global {
let mut found = false;
for did in &dids {
if did.dial_info.protocol_type() == pt
&& did.dial_info.address_type() == at
{
found = true;
break;
}
}
if !found {
return false;
}
}
}
true
})
.unwrap_or(false);
if !can_serve_as_relay {
return false;
}
true
}
}
#[instrument(level = "trace", skip(self), ret)]
pub fn find_inbound_relay(&self, cur_ts: u64) -> Option<NodeRef> {
// Get relay filter function
let relay_node_filter = self.make_relay_node_filter();
// Go through all entries and find fastest entry that matches filter function
let inner = self.inner.read();
let inner = &*inner;
let mut best_inbound_relay: Option<(DHTKey, Arc<BucketEntry>)> = None;
// Iterate all known nodes for candidates
Self::with_entries(inner, cur_ts, BucketEntryState::Unreliable, |k, v| {
let v2 = v.clone();
v.with(|e| {
// Ensure we have the node's status
if let Some(node_status) = e.peer_stats().status.clone() {
// Ensure the node will relay
if node_status.will_relay {
// Compare against previous candidate
if let Some(best_inbound_relay) = best_inbound_relay.as_mut() {
// Less is faster
let better = best_inbound_relay.1.with(|best| {
BucketEntryInner::cmp_fastest_reliable(cur_ts, e, best)
== std::cmp::Ordering::Less
});
// Now apply filter function and see if this node should be included
if better && relay_node_filter(e) {
*best_inbound_relay = (k, v2);
}
} else if relay_node_filter(e) {
// Always store the first candidate
best_inbound_relay = Some((k, v2));
}
}
}
});
// Don't end early, iterate through all entries
Option::<()>::None
});
// Return the best inbound relay noderef
best_inbound_relay.map(|(k, e)| NodeRef::new(self.clone(), k, e, None))
}
#[instrument(level = "trace", skip(self), ret)]
pub fn register_find_node_answer(&self, peers: Vec<PeerInfo>) -> Vec<NodeRef> {
let node_id = self.node_id();
// register nodes we'd found
let mut out = Vec::<NodeRef>::with_capacity(peers.len());
for p in peers {
// if our own node if is in the list then ignore it, as we don't add ourselves to our own routing table
if p.node_id.key == node_id {
continue;
}
// node can not be its own relay
if let Some(rpi) = &p.signed_node_info.node_info.relay_peer_info {
if rpi.node_id == p.node_id {
continue;
}
}
// register the node if it's new
if let Some(nr) =
self.register_node_with_signed_node_info(p.node_id.key, p.signed_node_info.clone())
{
out.push(nr);
}
}
out
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_node(
&self,
node_ref: NodeRef,
node_id: DHTKey,
) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let rpc_processor = self.rpc_processor();
let res = network_result_try!(
rpc_processor
.clone()
.rpc_call_find_node(
Destination::Direct(node_ref.clone()),
node_id,
None,
rpc_processor.make_respond_to_sender(node_ref.clone()),
)
.await?
);
// register nodes we'd found
Ok(NetworkResult::value(
self.register_find_node_answer(res.answer),
))
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_self(&self, node_ref: NodeRef) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let node_id = self.node_id();
self.find_node(node_ref, node_id).await
}
#[instrument(level = "trace", skip(self), ret, err)]
pub async fn find_target(&self, node_ref: NodeRef) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
let node_id = node_ref.node_id();
self.find_node(node_ref, node_id).await
}
#[instrument(level = "trace", skip(self))]
pub async fn reverse_find_node(&self, node_ref: NodeRef, wide: bool) {
// Ask bootstrap node to 'find' our own node so we can get some more nodes near ourselves
// and then contact those nodes to inform -them- that we exist
// Ask bootstrap server for nodes closest to our own node
let closest_nodes = network_result_value_or_log!(debug match self.find_self(node_ref.clone()).await {
Err(e) => {
log_rtab!(error
"find_self failed for {:?}: {:?}",
&node_ref, e
);
return;
}
Ok(v) => v,
} => {
return;
});
// Ask each node near us to find us as well
if wide {
for closest_nr in closest_nodes {
network_result_value_or_log!(debug match self.find_self(closest_nr.clone()).await {
Err(e) => {
log_rtab!(error
"find_self failed for {:?}: {:?}",
&closest_nr, e
);
continue;
}
Ok(v) => v,
} => {
// Do nothing with non-values
continue;
});
}
}
}
}