1025 lines
37 KiB
Rust
1025 lines
37 KiB
Rust
mod bucket;
|
|
mod bucket_entry;
|
|
mod debug;
|
|
mod node_ref;
|
|
mod node_ref_filter;
|
|
mod privacy;
|
|
mod route_spec_store;
|
|
mod routing_domain_editor;
|
|
mod routing_domains;
|
|
mod routing_table_inner;
|
|
mod stats_accounting;
|
|
mod tasks;
|
|
|
|
use crate::*;
|
|
|
|
use crate::crypto::*;
|
|
use crate::network_manager::*;
|
|
use crate::rpc_processor::*;
|
|
use bucket::*;
|
|
pub use bucket_entry::*;
|
|
pub use debug::*;
|
|
use hashlink::LruCache;
|
|
pub use node_ref::*;
|
|
pub use node_ref_filter::*;
|
|
pub use privacy::*;
|
|
pub use route_spec_store::*;
|
|
pub use routing_domain_editor::*;
|
|
pub use routing_domains::*;
|
|
pub use routing_table_inner::*;
|
|
pub use stats_accounting::*;
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
/// How frequently we tick the relay management routine
|
|
pub const RELAY_MANAGEMENT_INTERVAL_SECS: u32 = 1;
|
|
|
|
/// How frequently we tick the private route management routine
|
|
pub const PRIVATE_ROUTE_MANAGEMENT_INTERVAL_SECS: u32 = 1;
|
|
|
|
// Connectionless protocols like UDP are dependent on a NAT translation timeout
|
|
// We should ping them with some frequency and 30 seconds is typical timeout
|
|
pub const CONNECTIONLESS_TIMEOUT_SECS: u32 = 29;
|
|
|
|
pub type LowLevelProtocolPorts = BTreeSet<(LowLevelProtocolType, AddressType, u16)>;
|
|
pub type ProtocolToPortMapping = BTreeMap<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>;
|
|
#[derive(Clone, Debug)]
|
|
pub struct LowLevelPortInfo {
|
|
pub low_level_protocol_ports: LowLevelProtocolPorts,
|
|
pub protocol_to_port: ProtocolToPortMapping,
|
|
}
|
|
pub type RoutingTableEntryFilter<'t> =
|
|
Box<dyn FnMut(&RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> bool + Send + 't>;
|
|
|
|
#[derive(Clone, Debug, Default, Eq, PartialEq)]
|
|
pub struct RoutingTableHealth {
|
|
/// Number of reliable (responsive) entries in the routing table
|
|
pub reliable_entry_count: usize,
|
|
/// Number of unreliable (occasionally unresponsive) entries in the routing table
|
|
pub unreliable_entry_count: usize,
|
|
/// Number of dead (always unresponsive) entries in the routing table
|
|
pub dead_entry_count: usize,
|
|
/// If PublicInternet network class is valid yet
|
|
pub public_internet_ready: bool,
|
|
/// If LocalNetwork network class is valid yet
|
|
pub local_network_ready: bool,
|
|
}
|
|
|
|
pub(super) struct RoutingTableUnlockedInner {
|
|
// Accessors
|
|
config: VeilidConfig,
|
|
network_manager: NetworkManager,
|
|
|
|
/// The current node's public DHT key
|
|
node_id: DHTKey,
|
|
/// The current node's DHT key secret
|
|
node_id_secret: DHTKeySecret,
|
|
/// Buckets to kick on our next kick task
|
|
kick_queue: Mutex<BTreeSet<usize>>,
|
|
/// Background process for computing statistics
|
|
rolling_transfers_task: TickTask<EyreReport>,
|
|
/// Background process to purge dead routing table entries when necessary
|
|
kick_buckets_task: TickTask<EyreReport>,
|
|
/// Background process to get our initial routing table
|
|
bootstrap_task: TickTask<EyreReport>,
|
|
/// Background process to ensure we have enough nodes in our routing table
|
|
peer_minimum_refresh_task: TickTask<EyreReport>,
|
|
/// Background process to check nodes to see if they are still alive and for reliability
|
|
ping_validator_task: TickTask<EyreReport>,
|
|
/// Background process to keep relays up
|
|
relay_management_task: TickTask<EyreReport>,
|
|
/// Background process to keep private routes up
|
|
private_route_management_task: TickTask<EyreReport>,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct RoutingTable {
|
|
inner: Arc<RwLock<RoutingTableInner>>,
|
|
unlocked_inner: Arc<RoutingTableUnlockedInner>,
|
|
}
|
|
|
|
impl RoutingTable {
|
|
fn new_unlocked_inner(
|
|
config: VeilidConfig,
|
|
network_manager: NetworkManager,
|
|
) -> RoutingTableUnlockedInner {
|
|
let c = config.get();
|
|
RoutingTableUnlockedInner {
|
|
config: config.clone(),
|
|
network_manager,
|
|
node_id: c.network.node_id.unwrap(),
|
|
node_id_secret: c.network.node_id_secret.unwrap(),
|
|
kick_queue: Mutex::new(BTreeSet::default()),
|
|
rolling_transfers_task: TickTask::new(ROLLING_TRANSFERS_INTERVAL_SECS),
|
|
kick_buckets_task: TickTask::new(1),
|
|
bootstrap_task: TickTask::new(1),
|
|
peer_minimum_refresh_task: TickTask::new_ms(c.network.dht.min_peer_refresh_time_ms),
|
|
ping_validator_task: TickTask::new(1),
|
|
relay_management_task: TickTask::new(RELAY_MANAGEMENT_INTERVAL_SECS),
|
|
private_route_management_task: TickTask::new(PRIVATE_ROUTE_MANAGEMENT_INTERVAL_SECS),
|
|
}
|
|
}
|
|
pub fn new(network_manager: NetworkManager) -> Self {
|
|
let config = network_manager.config();
|
|
let unlocked_inner = Arc::new(Self::new_unlocked_inner(config, network_manager));
|
|
let inner = Arc::new(RwLock::new(RoutingTableInner::new(unlocked_inner.clone())));
|
|
let this = Self {
|
|
inner,
|
|
unlocked_inner,
|
|
};
|
|
|
|
this.start_tasks();
|
|
|
|
this
|
|
}
|
|
|
|
pub fn network_manager(&self) -> NetworkManager {
|
|
self.unlocked_inner.network_manager.clone()
|
|
}
|
|
pub fn rpc_processor(&self) -> RPCProcessor {
|
|
self.network_manager().rpc_processor()
|
|
}
|
|
pub fn update_callback(&self) -> UpdateCallback {
|
|
self.network_manager().update_callback()
|
|
}
|
|
pub fn with_config<F, R>(&self, f: F) -> R
|
|
where
|
|
F: FnOnce(&VeilidConfigInner) -> R,
|
|
{
|
|
f(&*self.unlocked_inner.config.get())
|
|
}
|
|
|
|
pub fn node_id(&self) -> DHTKey {
|
|
self.unlocked_inner.node_id
|
|
}
|
|
|
|
pub fn node_id_secret(&self) -> DHTKeySecret {
|
|
self.unlocked_inner.node_id_secret
|
|
}
|
|
|
|
/////////////////////////////////////
|
|
/// Initialization
|
|
|
|
/// Called to initialize the routing table after it is created
|
|
pub async fn init(&self) -> EyreResult<()> {
|
|
debug!("starting routing table init");
|
|
|
|
// Set up routing buckets
|
|
{
|
|
let mut inner = self.inner.write();
|
|
inner.init_buckets(self.clone());
|
|
}
|
|
|
|
// Load bucket entries from table db if possible
|
|
debug!("loading routing table entries");
|
|
if let Err(e) = self.load_buckets().await {
|
|
log_rtab!(debug "Error loading buckets from storage: {:#?}. Resetting.", e);
|
|
let mut inner = self.inner.write();
|
|
inner.init_buckets(self.clone());
|
|
}
|
|
|
|
// Set up routespecstore
|
|
debug!("starting route spec store init");
|
|
let route_spec_store = match RouteSpecStore::load(self.clone()).await {
|
|
Ok(v) => v,
|
|
Err(e) => {
|
|
log_rtab!(debug "Error loading route spec store: {:#?}. Resetting.", e);
|
|
RouteSpecStore::new(self.clone())
|
|
}
|
|
};
|
|
debug!("finished route spec store init");
|
|
|
|
{
|
|
let mut inner = self.inner.write();
|
|
inner.route_spec_store = Some(route_spec_store);
|
|
}
|
|
|
|
debug!("finished routing table init");
|
|
Ok(())
|
|
}
|
|
|
|
/// Called to shut down the routing table
|
|
pub async fn terminate(&self) {
|
|
debug!("starting routing table terminate");
|
|
|
|
// Stop tasks
|
|
self.stop_tasks().await;
|
|
|
|
// Load bucket entries from table db if possible
|
|
debug!("saving routing table entries");
|
|
if let Err(e) = self.save_buckets().await {
|
|
error!("failed to save routing table entries: {}", e);
|
|
}
|
|
|
|
debug!("saving route spec store");
|
|
let rss = {
|
|
let mut inner = self.inner.write();
|
|
inner.route_spec_store.take()
|
|
};
|
|
if let Some(rss) = rss {
|
|
if let Err(e) = rss.save().await {
|
|
error!("couldn't save route spec store: {}", e);
|
|
}
|
|
}
|
|
debug!("shutting down routing table");
|
|
|
|
let mut inner = self.inner.write();
|
|
*inner = RoutingTableInner::new(self.unlocked_inner.clone());
|
|
|
|
debug!("finished routing table terminate");
|
|
}
|
|
|
|
async fn save_buckets(&self) -> EyreResult<()> {
|
|
// Serialize all entries
|
|
let mut bucketvec: Vec<Vec<u8>> = Vec::new();
|
|
{
|
|
let inner = &*self.inner.read();
|
|
for bucket in &inner.buckets {
|
|
bucketvec.push(bucket.save_bucket()?)
|
|
}
|
|
}
|
|
let table_store = self.network_manager().table_store();
|
|
let tdb = table_store.open("routing_table", 1).await?;
|
|
let bucket_count = bucketvec.len();
|
|
let dbx = tdb.transact();
|
|
if let Err(e) = dbx.store_rkyv(0, b"bucket_count", &bucket_count) {
|
|
dbx.rollback();
|
|
return Err(e);
|
|
}
|
|
|
|
for (n, b) in bucketvec.iter().enumerate() {
|
|
dbx.store(0, format!("bucket_{}", n).as_bytes(), b)
|
|
}
|
|
dbx.commit().await?;
|
|
Ok(())
|
|
}
|
|
|
|
async fn load_buckets(&self) -> EyreResult<()> {
|
|
// Deserialize all entries
|
|
let tstore = self.network_manager().table_store();
|
|
let tdb = tstore.open("routing_table", 1).await?;
|
|
let Some(bucket_count): Option<usize> = tdb.load_rkyv(0, b"bucket_count")? else {
|
|
log_rtab!(debug "no bucket count in saved routing table");
|
|
return Ok(());
|
|
};
|
|
let inner = &mut *self.inner.write();
|
|
if bucket_count != inner.buckets.len() {
|
|
// Must have the same number of buckets
|
|
warn!("bucket count is different, not loading routing table");
|
|
return Ok(());
|
|
}
|
|
let mut bucketdata_vec: Vec<Vec<u8>> = Vec::new();
|
|
for n in 0..bucket_count {
|
|
let Some(bucketdata): Option<Vec<u8>> =
|
|
tdb.load(0, format!("bucket_{}", n).as_bytes())? else {
|
|
warn!("bucket data not loading, skipping loading routing table");
|
|
return Ok(());
|
|
};
|
|
bucketdata_vec.push(bucketdata);
|
|
}
|
|
for (n, bucketdata) in bucketdata_vec.into_iter().enumerate() {
|
|
inner.buckets[n].load_bucket(bucketdata)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Set up the local network routing domain with our local routing table configuration
|
|
pub fn configure_local_network_routing_domain(&self, local_networks: Vec<(IpAddr, IpAddr)>) {
|
|
log_net!(debug "configure_local_network_routing_domain: {:#?}", local_networks);
|
|
self.inner
|
|
.write()
|
|
.configure_local_network_routing_domain(local_networks);
|
|
}
|
|
|
|
/////////////////////////////////////
|
|
/// Locked operations
|
|
|
|
pub fn routing_domain_for_address(&self, address: Address) -> Option<RoutingDomain> {
|
|
self.inner.read().routing_domain_for_address(address)
|
|
}
|
|
|
|
pub fn route_spec_store(&self) -> RouteSpecStore {
|
|
self.inner.read().route_spec_store.as_ref().unwrap().clone()
|
|
}
|
|
|
|
pub fn relay_node(&self, domain: RoutingDomain) -> Option<NodeRef> {
|
|
self.inner.read().relay_node(domain)
|
|
}
|
|
|
|
pub fn has_dial_info(&self, domain: RoutingDomain) -> bool {
|
|
self.inner.read().has_dial_info(domain)
|
|
}
|
|
|
|
pub fn dial_info_details(&self, domain: RoutingDomain) -> Vec<DialInfoDetail> {
|
|
self.inner.read().dial_info_details(domain)
|
|
}
|
|
|
|
pub fn first_filtered_dial_info_detail(
|
|
&self,
|
|
routing_domain_set: RoutingDomainSet,
|
|
filter: &DialInfoFilter,
|
|
) -> Option<DialInfoDetail> {
|
|
self.inner
|
|
.read()
|
|
.first_filtered_dial_info_detail(routing_domain_set, filter)
|
|
}
|
|
|
|
pub fn all_filtered_dial_info_details(
|
|
&self,
|
|
routing_domain_set: RoutingDomainSet,
|
|
filter: &DialInfoFilter,
|
|
) -> Vec<DialInfoDetail> {
|
|
self.inner
|
|
.read()
|
|
.all_filtered_dial_info_details(routing_domain_set, filter)
|
|
}
|
|
|
|
pub fn ensure_dial_info_is_valid(&self, domain: RoutingDomain, dial_info: &DialInfo) -> bool {
|
|
self.inner
|
|
.read()
|
|
.ensure_dial_info_is_valid(domain, dial_info)
|
|
}
|
|
|
|
pub fn node_info_is_valid_in_routing_domain(
|
|
&self,
|
|
routing_domain: RoutingDomain,
|
|
node_info: &NodeInfo,
|
|
) -> bool {
|
|
self.inner
|
|
.read()
|
|
.node_info_is_valid_in_routing_domain(routing_domain, node_info)
|
|
}
|
|
|
|
pub fn signed_node_info_is_valid_in_routing_domain(
|
|
&self,
|
|
routing_domain: RoutingDomain,
|
|
signed_node_info: &SignedNodeInfo,
|
|
) -> bool {
|
|
self.inner
|
|
.read()
|
|
.signed_node_info_is_valid_in_routing_domain(routing_domain, signed_node_info)
|
|
}
|
|
|
|
/// Look up the best way for two nodes to reach each other over a specific routing domain
|
|
#[instrument(level = "trace", skip(self), ret)]
|
|
pub fn get_contact_method(
|
|
&self,
|
|
routing_domain: RoutingDomain,
|
|
peer_a: &PeerInfo,
|
|
peer_b: &PeerInfo,
|
|
dial_info_filter: DialInfoFilter,
|
|
sequencing: Sequencing,
|
|
) -> ContactMethod {
|
|
self.inner.read().get_contact_method(
|
|
routing_domain,
|
|
peer_a,
|
|
peer_b,
|
|
dial_info_filter,
|
|
sequencing,
|
|
)
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(self))]
|
|
pub fn edit_routing_domain(&self, domain: RoutingDomain) -> RoutingDomainEditor {
|
|
RoutingDomainEditor::new(self.clone(), domain)
|
|
}
|
|
|
|
/// Return a copy of our node's peerinfo
|
|
pub fn get_own_peer_info(&self, routing_domain: RoutingDomain) -> Option<PeerInfo> {
|
|
self.inner.read().get_own_peer_info(routing_domain)
|
|
}
|
|
|
|
/// Return the best effort copy of our node's peerinfo
|
|
/// This may be invalid and should not be passed to other nodes,
|
|
/// but may be used for contact method calculation
|
|
pub fn get_best_effort_own_peer_info(&self, routing_domain: RoutingDomain) -> PeerInfo {
|
|
self.inner
|
|
.read()
|
|
.get_best_effort_own_peer_info(routing_domain)
|
|
}
|
|
|
|
/// If we have a valid network class in this routing domain, then our 'NodeInfo' is valid
|
|
/// If this is true, we can get our final peer info, otherwise we only have a 'best effort' peer info
|
|
pub fn has_valid_own_node_info(&self, routing_domain: RoutingDomain) -> bool {
|
|
self.inner.read().has_valid_own_node_info(routing_domain)
|
|
}
|
|
|
|
/// Return our current node info timestamp
|
|
pub fn get_own_node_info_ts(&self, routing_domain: RoutingDomain) -> Option<Timestamp> {
|
|
self.inner.read().get_own_node_info_ts(routing_domain)
|
|
}
|
|
|
|
/// Return the domain's currently registered network class
|
|
pub fn get_network_class(&self, routing_domain: RoutingDomain) -> Option<NetworkClass> {
|
|
self.inner.read().get_network_class(routing_domain)
|
|
}
|
|
|
|
/// Return the domain's filter for what we can receivein the form of a dial info filter
|
|
pub fn get_inbound_dial_info_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter {
|
|
self.inner
|
|
.read()
|
|
.get_inbound_dial_info_filter(routing_domain)
|
|
}
|
|
|
|
/// Return the domain's filter for what we can receive in the form of a node ref filter
|
|
pub fn get_inbound_node_ref_filter(&self, routing_domain: RoutingDomain) -> NodeRefFilter {
|
|
self.inner
|
|
.read()
|
|
.get_inbound_node_ref_filter(routing_domain)
|
|
}
|
|
|
|
/// Return the domain's filter for what we can send out in the form of a dial info filter
|
|
pub fn get_outbound_dial_info_filter(&self, routing_domain: RoutingDomain) -> DialInfoFilter {
|
|
self.inner
|
|
.read()
|
|
.get_outbound_dial_info_filter(routing_domain)
|
|
}
|
|
/// Return the domain's filter for what we can receive in the form of a node ref filter
|
|
pub fn get_outbound_node_ref_filter(&self, routing_domain: RoutingDomain) -> NodeRefFilter {
|
|
self.inner
|
|
.read()
|
|
.get_outbound_node_ref_filter(routing_domain)
|
|
}
|
|
|
|
/// Attempt to empty the routing table
|
|
/// should only be performed when there are no node_refs (detached)
|
|
pub fn purge_buckets(&self) {
|
|
self.inner.write().purge_buckets();
|
|
}
|
|
|
|
/// Attempt to remove last_connections from entries
|
|
pub fn purge_last_connections(&self) {
|
|
self.inner.write().purge_last_connections();
|
|
}
|
|
|
|
fn find_bucket_index(&self, node_id: DHTKey) -> usize {
|
|
distance(&node_id, &self.unlocked_inner.node_id)
|
|
.first_nonzero_bit()
|
|
.unwrap()
|
|
}
|
|
|
|
pub fn get_entry_count(
|
|
&self,
|
|
routing_domain_set: RoutingDomainSet,
|
|
min_state: BucketEntryState,
|
|
) -> usize {
|
|
self.inner
|
|
.read()
|
|
.get_entry_count(routing_domain_set, min_state)
|
|
}
|
|
|
|
pub fn get_nodes_needing_ping(
|
|
&self,
|
|
routing_domain: RoutingDomain,
|
|
cur_ts: Timestamp,
|
|
) -> Vec<NodeRef> {
|
|
self.inner
|
|
.read()
|
|
.get_nodes_needing_ping(self.clone(), routing_domain, cur_ts)
|
|
}
|
|
|
|
pub fn get_all_nodes(&self, cur_ts: Timestamp) -> Vec<NodeRef> {
|
|
let inner = self.inner.read();
|
|
inner.get_all_nodes(self.clone(), cur_ts)
|
|
}
|
|
|
|
fn queue_bucket_kick(&self, node_id: DHTKey) {
|
|
let idx = self.find_bucket_index(node_id);
|
|
self.unlocked_inner.kick_queue.lock().insert(idx);
|
|
}
|
|
|
|
/// Create a node reference, possibly creating a bucket entry
|
|
/// the 'update_func' closure is called on the node, and, if created,
|
|
/// in a locked fashion as to ensure the bucket entry state is always valid
|
|
pub fn create_node_ref<F>(&self, node_id: DHTKey, update_func: F) -> Option<NodeRef>
|
|
where
|
|
F: FnOnce(&mut RoutingTableInner, &mut BucketEntryInner),
|
|
{
|
|
self.inner
|
|
.write()
|
|
.create_node_ref(self.clone(), node_id, update_func)
|
|
}
|
|
|
|
/// Resolve an existing routing table entry and return a reference to it
|
|
pub fn lookup_node_ref(&self, node_id: DHTKey) -> Option<NodeRef> {
|
|
self.inner.read().lookup_node_ref(self.clone(), node_id)
|
|
}
|
|
|
|
/// Resolve an existing routing table entry and return a filtered reference to it
|
|
pub fn lookup_and_filter_noderef(
|
|
&self,
|
|
node_id: DHTKey,
|
|
routing_domain_set: RoutingDomainSet,
|
|
dial_info_filter: DialInfoFilter,
|
|
) -> Option<NodeRef> {
|
|
self.inner.read().lookup_and_filter_noderef(
|
|
self.clone(),
|
|
node_id,
|
|
routing_domain_set,
|
|
dial_info_filter,
|
|
)
|
|
}
|
|
|
|
/// Shortcut function to add a node to our routing table if it doesn't exist
|
|
/// and add the dial info we have for it. Returns a noderef filtered to
|
|
/// the routing domain in which this node was registered for convenience.
|
|
pub fn register_node_with_signed_node_info(
|
|
&self,
|
|
routing_domain: RoutingDomain,
|
|
node_id: DHTKey,
|
|
signed_node_info: SignedNodeInfo,
|
|
allow_invalid: bool,
|
|
) -> Option<NodeRef> {
|
|
self.inner.write().register_node_with_signed_node_info(
|
|
self.clone(),
|
|
routing_domain,
|
|
node_id,
|
|
signed_node_info,
|
|
allow_invalid,
|
|
)
|
|
}
|
|
|
|
/// Shortcut function to add a node to our routing table if it doesn't exist
|
|
/// and add the last peer address we have for it, since that's pretty common
|
|
pub fn register_node_with_existing_connection(
|
|
&self,
|
|
node_id: DHTKey,
|
|
descriptor: ConnectionDescriptor,
|
|
timestamp: Timestamp,
|
|
) -> Option<NodeRef> {
|
|
self.inner.write().register_node_with_existing_connection(
|
|
self.clone(),
|
|
node_id,
|
|
descriptor,
|
|
timestamp,
|
|
)
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Routing Table Health Metrics
|
|
|
|
pub fn get_routing_table_health(&self) -> RoutingTableHealth {
|
|
self.inner.read().get_routing_table_health()
|
|
}
|
|
|
|
pub fn get_recent_peers(&self) -> Vec<(DHTKey, RecentPeersEntry)> {
|
|
let mut recent_peers = Vec::new();
|
|
let mut dead_peers = Vec::new();
|
|
let mut out = Vec::new();
|
|
|
|
// collect all recent peers
|
|
{
|
|
let inner = self.inner.read();
|
|
for (k, _v) in &inner.recent_peers {
|
|
recent_peers.push(*k);
|
|
}
|
|
}
|
|
|
|
// look up each node and make sure the connection is still live
|
|
// (uses same logic as send_data, ensuring last_connection works for UDP)
|
|
for e in &recent_peers {
|
|
let mut dead = true;
|
|
if let Some(nr) = self.lookup_node_ref(*e) {
|
|
if let Some(last_connection) = nr.last_connection() {
|
|
out.push((*e, RecentPeersEntry { last_connection }));
|
|
dead = false;
|
|
}
|
|
}
|
|
if dead {
|
|
dead_peers.push(e);
|
|
}
|
|
}
|
|
|
|
// purge dead recent peers
|
|
{
|
|
let mut inner = self.inner.write();
|
|
for d in dead_peers {
|
|
inner.recent_peers.remove(d);
|
|
}
|
|
}
|
|
|
|
out
|
|
}
|
|
|
|
pub fn touch_recent_peer(&self, node_id: DHTKey, last_connection: ConnectionDescriptor) {
|
|
self.inner
|
|
.write()
|
|
.touch_recent_peer(node_id, last_connection)
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Find Nodes
|
|
|
|
/// Build a map of protocols to low level ports
|
|
/// This way we can get the set of protocols required to keep our NAT mapping alive for keepalive pings
|
|
/// Only one protocol per low level protocol/port combination is required
|
|
/// For example, if WS/WSS and TCP protocols are on the same low-level TCP port, only TCP keepalives will be required
|
|
/// and we do not need to do WS/WSS keepalive as well. If they are on different ports, then we will need WS/WSS keepalives too.
|
|
pub fn get_low_level_port_info(&self) -> LowLevelPortInfo {
|
|
let mut low_level_protocol_ports =
|
|
BTreeSet::<(LowLevelProtocolType, AddressType, u16)>::new();
|
|
let mut protocol_to_port =
|
|
BTreeMap::<(ProtocolType, AddressType), (LowLevelProtocolType, u16)>::new();
|
|
let our_dids = self.all_filtered_dial_info_details(
|
|
RoutingDomain::PublicInternet.into(),
|
|
&DialInfoFilter::all(),
|
|
);
|
|
for did in our_dids {
|
|
low_level_protocol_ports.insert((
|
|
did.dial_info.protocol_type().low_level_protocol_type(),
|
|
did.dial_info.address_type(),
|
|
did.dial_info.socket_address().port(),
|
|
));
|
|
protocol_to_port.insert(
|
|
(did.dial_info.protocol_type(), did.dial_info.address_type()),
|
|
(
|
|
did.dial_info.protocol_type().low_level_protocol_type(),
|
|
did.dial_info.socket_address().port(),
|
|
),
|
|
);
|
|
}
|
|
LowLevelPortInfo {
|
|
low_level_protocol_ports,
|
|
protocol_to_port,
|
|
}
|
|
}
|
|
|
|
/// Makes a filter that finds nodes with a matching inbound dialinfo
|
|
pub fn make_inbound_dial_info_entry_filter<'a>(
|
|
routing_domain: RoutingDomain,
|
|
dial_info_filter: DialInfoFilter,
|
|
) -> RoutingTableEntryFilter<'a> {
|
|
// does it have matching public dial info?
|
|
Box::new(move |rti, _k, e| {
|
|
if let Some(e) = e {
|
|
e.with(rti, |_rti, e| {
|
|
if let Some(ni) = e.node_info(routing_domain) {
|
|
if ni
|
|
.first_filtered_dial_info_detail(DialInfoDetail::NO_SORT, |did| {
|
|
did.matches_filter(&dial_info_filter)
|
|
})
|
|
.is_some()
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
})
|
|
} else {
|
|
rti.first_filtered_dial_info_detail(routing_domain.into(), &dial_info_filter)
|
|
.is_some()
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Makes a filter that finds nodes capable of dialing a particular outbound dialinfo
|
|
pub fn make_outbound_dial_info_entry_filter<'a>(
|
|
routing_domain: RoutingDomain,
|
|
dial_info: DialInfo,
|
|
) -> RoutingTableEntryFilter<'a> {
|
|
// does the node's outbound capabilities match the dialinfo?
|
|
Box::new(move |rti, _k, e| {
|
|
if let Some(e) = e {
|
|
e.with(rti, |_rti, e| {
|
|
if let Some(ni) = e.node_info(routing_domain) {
|
|
let dif = DialInfoFilter::all()
|
|
.with_protocol_type_set(ni.outbound_protocols)
|
|
.with_address_type_set(ni.address_types);
|
|
if dial_info.matches_filter(&dif) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
})
|
|
} else {
|
|
let dif = rti.get_outbound_dial_info_filter(routing_domain);
|
|
dial_info.matches_filter(&dif)
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn find_fast_public_nodes_filtered(
|
|
&self,
|
|
node_count: usize,
|
|
filters: VecDeque<RoutingTableEntryFilter>,
|
|
) -> Vec<NodeRef> {
|
|
self.inner
|
|
.read()
|
|
.find_fast_public_nodes_filtered(self.clone(), node_count, filters)
|
|
}
|
|
|
|
/// Retrieve up to N of each type of protocol capable nodes
|
|
pub fn find_bootstrap_nodes_filtered(&self, max_per_type: usize) -> Vec<NodeRef> {
|
|
let protocol_types = vec![
|
|
ProtocolType::UDP,
|
|
ProtocolType::TCP,
|
|
ProtocolType::WS,
|
|
ProtocolType::WSS,
|
|
];
|
|
let protocol_types_len = protocol_types.len();
|
|
let mut nodes_proto_v4 = vec![0usize, 0usize, 0usize, 0usize];
|
|
let mut nodes_proto_v6 = vec![0usize, 0usize, 0usize, 0usize];
|
|
|
|
let filter = Box::new(
|
|
move |rti: &RoutingTableInner, _k: DHTKey, v: Option<Arc<BucketEntry>>| {
|
|
let entry = v.unwrap();
|
|
entry.with(rti, |_rti, e| {
|
|
// skip nodes on our local network here
|
|
if e.has_node_info(RoutingDomain::LocalNetwork.into()) {
|
|
return false;
|
|
}
|
|
|
|
// does it have some dial info we need?
|
|
let filter = |n: &NodeInfo| {
|
|
let mut keep = false;
|
|
for did in &n.dial_info_detail_list {
|
|
if matches!(did.dial_info.address_type(), AddressType::IPV4) {
|
|
for (n, protocol_type) in protocol_types.iter().enumerate() {
|
|
if nodes_proto_v4[n] < max_per_type
|
|
&& did.dial_info.protocol_type() == *protocol_type
|
|
{
|
|
nodes_proto_v4[n] += 1;
|
|
keep = true;
|
|
}
|
|
}
|
|
} else if matches!(did.dial_info.address_type(), AddressType::IPV6) {
|
|
for (n, protocol_type) in protocol_types.iter().enumerate() {
|
|
if nodes_proto_v6[n] < max_per_type
|
|
&& did.dial_info.protocol_type() == *protocol_type
|
|
{
|
|
nodes_proto_v6[n] += 1;
|
|
keep = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
keep
|
|
};
|
|
|
|
e.node_info(RoutingDomain::PublicInternet)
|
|
.map(filter)
|
|
.unwrap_or(false)
|
|
})
|
|
},
|
|
) as RoutingTableEntryFilter;
|
|
|
|
let filters = VecDeque::from([filter]);
|
|
|
|
self.find_fastest_nodes(
|
|
protocol_types_len * 2 * max_per_type,
|
|
filters,
|
|
|_rti, k: DHTKey, v: Option<Arc<BucketEntry>>| {
|
|
NodeRef::new(self.clone(), k, v.unwrap().clone(), None)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub fn find_peers_with_sort_and_filter<C, T, O>(
|
|
&self,
|
|
node_count: usize,
|
|
cur_ts: Timestamp,
|
|
filters: VecDeque<RoutingTableEntryFilter>,
|
|
compare: C,
|
|
transform: T,
|
|
) -> Vec<O>
|
|
where
|
|
C: for<'a, 'b> FnMut(
|
|
&'a RoutingTableInner,
|
|
&'b (DHTKey, Option<Arc<BucketEntry>>),
|
|
&'b (DHTKey, Option<Arc<BucketEntry>>),
|
|
) -> core::cmp::Ordering,
|
|
T: for<'r> FnMut(&'r RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O + Send,
|
|
{
|
|
self.inner
|
|
.read()
|
|
.find_peers_with_sort_and_filter(node_count, cur_ts, filters, compare, transform)
|
|
}
|
|
|
|
pub fn find_fastest_nodes<'a, T, O>(
|
|
&self,
|
|
node_count: usize,
|
|
filters: VecDeque<RoutingTableEntryFilter>,
|
|
transform: T,
|
|
) -> Vec<O>
|
|
where
|
|
T: for<'r> FnMut(&'r RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O + Send,
|
|
{
|
|
self.inner
|
|
.read()
|
|
.find_fastest_nodes(node_count, filters, transform)
|
|
}
|
|
|
|
pub fn find_closest_nodes<'a, T, O>(
|
|
&self,
|
|
node_id: DHTKey,
|
|
filters: VecDeque<RoutingTableEntryFilter>,
|
|
transform: T,
|
|
) -> Vec<O>
|
|
where
|
|
T: for<'r> FnMut(&'r RoutingTableInner, DHTKey, Option<Arc<BucketEntry>>) -> O + Send,
|
|
{
|
|
self.inner
|
|
.read()
|
|
.find_closest_nodes(node_id, filters, transform)
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self), ret)]
|
|
pub fn register_find_node_answer(&self, peers: Vec<PeerInfo>) -> Vec<NodeRef> {
|
|
let node_id = self.node_id();
|
|
|
|
// register nodes we'd found
|
|
let mut out = Vec::<NodeRef>::with_capacity(peers.len());
|
|
for p in peers {
|
|
// if our own node if is in the list then ignore it, as we don't add ourselves to our own routing table
|
|
if p.node_id.key == node_id {
|
|
continue;
|
|
}
|
|
|
|
// node can not be its own relay
|
|
if let Some(rid) = &p.signed_node_info.relay_id() {
|
|
if rid.key == p.node_id.key {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// register the node if it's new
|
|
if let Some(nr) = self.register_node_with_signed_node_info(
|
|
RoutingDomain::PublicInternet,
|
|
p.node_id.key,
|
|
p.signed_node_info.clone(),
|
|
false,
|
|
) {
|
|
out.push(nr);
|
|
}
|
|
}
|
|
out
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self), ret, err)]
|
|
pub async fn find_node(
|
|
&self,
|
|
node_ref: NodeRef,
|
|
node_id: DHTKey,
|
|
) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
|
|
let rpc_processor = self.rpc_processor();
|
|
|
|
let res = network_result_try!(
|
|
rpc_processor
|
|
.clone()
|
|
.rpc_call_find_node(Destination::direct(node_ref), node_id)
|
|
.await?
|
|
);
|
|
|
|
// register nodes we'd found
|
|
Ok(NetworkResult::value(
|
|
self.register_find_node_answer(res.answer),
|
|
))
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self), ret, err)]
|
|
pub async fn find_self(&self, node_ref: NodeRef) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
|
|
let node_id = self.node_id();
|
|
self.find_node(node_ref, node_id).await
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self), ret, err)]
|
|
pub async fn find_target(&self, node_ref: NodeRef) -> EyreResult<NetworkResult<Vec<NodeRef>>> {
|
|
let node_id = node_ref.node_id();
|
|
self.find_node(node_ref, node_id).await
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self))]
|
|
pub async fn reverse_find_node(&self, node_ref: NodeRef, wide: bool) {
|
|
// Ask bootstrap node to 'find' our own node so we can get some more nodes near ourselves
|
|
// and then contact those nodes to inform -them- that we exist
|
|
|
|
// Ask bootstrap server for nodes closest to our own node
|
|
let closest_nodes = network_result_value_or_log!(match self.find_self(node_ref.clone()).await {
|
|
Err(e) => {
|
|
log_rtab!(error
|
|
"find_self failed for {:?}: {:?}",
|
|
&node_ref, e
|
|
);
|
|
return;
|
|
}
|
|
Ok(v) => v,
|
|
} => {
|
|
return;
|
|
});
|
|
|
|
// Ask each node near us to find us as well
|
|
if wide {
|
|
for closest_nr in closest_nodes {
|
|
network_result_value_or_log!(match self.find_self(closest_nr.clone()).await {
|
|
Err(e) => {
|
|
log_rtab!(error
|
|
"find_self failed for {:?}: {:?}",
|
|
&closest_nr, e
|
|
);
|
|
continue;
|
|
}
|
|
Ok(v) => v,
|
|
} => {
|
|
// Do nothing with non-values
|
|
continue;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn make_public_internet_relay_node_filter(&self) -> impl Fn(&BucketEntryInner) -> bool {
|
|
// Get all our outbound protocol/address types
|
|
let outbound_dif = self.get_outbound_dial_info_filter(RoutingDomain::PublicInternet);
|
|
let mapped_port_info = self.get_low_level_port_info();
|
|
|
|
move |e: &BucketEntryInner| {
|
|
// Ensure this node is not on the local network
|
|
if e.has_node_info(RoutingDomain::LocalNetwork.into()) {
|
|
return false;
|
|
}
|
|
|
|
// Disqualify nodes that don't cover all our inbound ports for tcp and udp
|
|
// as we need to be able to use the relay for keepalives for all nat mappings
|
|
let mut low_level_protocol_ports = mapped_port_info.low_level_protocol_ports.clone();
|
|
|
|
let can_serve_as_relay = e
|
|
.node_info(RoutingDomain::PublicInternet)
|
|
.map(|n| {
|
|
let dids = n.all_filtered_dial_info_details(
|
|
Some(DialInfoDetail::ordered_sequencing_sort), // By default, choose connection-oriented protocol for relay
|
|
|did| did.matches_filter(&outbound_dif),
|
|
);
|
|
for did in &dids {
|
|
let pt = did.dial_info.protocol_type();
|
|
let at = did.dial_info.address_type();
|
|
if let Some((llpt, port)) = mapped_port_info.protocol_to_port.get(&(pt, at))
|
|
{
|
|
low_level_protocol_ports.remove(&(*llpt, at, *port));
|
|
}
|
|
}
|
|
low_level_protocol_ports.is_empty()
|
|
})
|
|
.unwrap_or(false);
|
|
if !can_serve_as_relay {
|
|
return false;
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "trace", skip(self), ret)]
|
|
pub fn find_inbound_relay(
|
|
&self,
|
|
routing_domain: RoutingDomain,
|
|
cur_ts: Timestamp,
|
|
) -> Option<NodeRef> {
|
|
// Get relay filter function
|
|
let relay_node_filter = match routing_domain {
|
|
RoutingDomain::PublicInternet => self.make_public_internet_relay_node_filter(),
|
|
RoutingDomain::LocalNetwork => {
|
|
unimplemented!();
|
|
}
|
|
};
|
|
|
|
// Go through all entries and find fastest entry that matches filter function
|
|
let inner = self.inner.read();
|
|
let inner = &*inner;
|
|
let mut best_inbound_relay: Option<(DHTKey, Arc<BucketEntry>)> = None;
|
|
|
|
// Iterate all known nodes for candidates
|
|
inner.with_entries(cur_ts, BucketEntryState::Unreliable, |rti, k, v| {
|
|
let v2 = v.clone();
|
|
v.with(rti, |rti, e| {
|
|
// Ensure we have the node's status
|
|
if let Some(node_status) = e.node_status(routing_domain) {
|
|
// Ensure the node will relay
|
|
if node_status.will_relay() {
|
|
// Compare against previous candidate
|
|
if let Some(best_inbound_relay) = best_inbound_relay.as_mut() {
|
|
// Less is faster
|
|
let better = best_inbound_relay.1.with(rti, |_rti, best| {
|
|
// choose low latency stability for relays
|
|
BucketEntryInner::cmp_fastest_reliable(cur_ts, e, best)
|
|
== std::cmp::Ordering::Less
|
|
});
|
|
// Now apply filter function and see if this node should be included
|
|
if better && relay_node_filter(e) {
|
|
*best_inbound_relay = (k, v2);
|
|
}
|
|
} else if relay_node_filter(e) {
|
|
// Always store the first candidate
|
|
best_inbound_relay = Some((k, v2));
|
|
}
|
|
}
|
|
}
|
|
});
|
|
// Don't end early, iterate through all entries
|
|
Option::<()>::None
|
|
});
|
|
// Return the best inbound relay noderef
|
|
best_inbound_relay.map(|(k, e)| NodeRef::new(self.clone(), k, e, None))
|
|
}
|
|
}
|