veilid/veilid-core/src/routing_table/mod.rs
2022-05-16 11:52:48 -04:00

1043 lines
37 KiB
Rust

mod bucket;
mod bucket_entry;
mod debug;
mod find_nodes;
mod node_ref;
mod stats_accounting;
use crate::dht::*;
use crate::intf::*;
use crate::network_manager::*;
use crate::rpc_processor::*;
use crate::xx::*;
use crate::*;
use alloc::str::FromStr;
use bucket::*;
pub use bucket_entry::*;
pub use debug::*;
pub use find_nodes::*;
use futures_util::stream::{FuturesUnordered, StreamExt};
pub use node_ref::*;
pub use stats_accounting::*;
//////////////////////////////////////////////////////////////////////////
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq)]
pub enum RoutingDomain {
PublicInternet,
LocalNetwork,
}
#[derive(Debug, Default)]
pub struct RoutingDomainDetail {
dial_info_details: Vec<DialInfoDetail>,
}
struct RoutingTableInner {
network_manager: NetworkManager,
node_id: DHTKey,
node_id_secret: DHTKeySecret,
buckets: Vec<Bucket>,
public_internet_routing_domain: RoutingDomainDetail,
local_network_routing_domain: RoutingDomainDetail,
bucket_entry_count: usize,
// Transfer stats for this node
self_latency_stats_accounting: LatencyStatsAccounting,
self_transfer_stats_accounting: TransferStatsAccounting,
self_transfer_stats: TransferStatsDownUp,
}
#[derive(Clone, Debug, Default)]
pub struct RoutingTableHealth {
pub reliable_entry_count: usize,
pub unreliable_entry_count: usize,
pub dead_entry_count: usize,
}
struct RoutingTableUnlockedInner {
// Background processes
rolling_transfers_task: TickTask,
bootstrap_task: TickTask,
peer_minimum_refresh_task: TickTask,
ping_validator_task: TickTask,
node_info_update_single_future: SingleFuture<()>,
}
#[derive(Clone)]
pub struct RoutingTable {
config: VeilidConfig,
inner: Arc<Mutex<RoutingTableInner>>,
unlocked_inner: Arc<RoutingTableUnlockedInner>,
}
impl RoutingTable {
fn new_inner(network_manager: NetworkManager) -> RoutingTableInner {
RoutingTableInner {
network_manager,
node_id: DHTKey::default(),
node_id_secret: DHTKeySecret::default(),
buckets: Vec::new(),
public_internet_routing_domain: RoutingDomainDetail::default(),
local_network_routing_domain: RoutingDomainDetail::default(),
bucket_entry_count: 0,
self_latency_stats_accounting: LatencyStatsAccounting::new(),
self_transfer_stats_accounting: TransferStatsAccounting::new(),
self_transfer_stats: TransferStatsDownUp::default(),
}
}
fn new_unlocked_inner(config: VeilidConfig) -> RoutingTableUnlockedInner {
let c = config.get();
RoutingTableUnlockedInner {
rolling_transfers_task: TickTask::new(ROLLING_TRANSFERS_INTERVAL_SECS),
bootstrap_task: TickTask::new(1),
peer_minimum_refresh_task: TickTask::new_ms(c.network.dht.min_peer_refresh_time_ms),
ping_validator_task: TickTask::new(1),
node_info_update_single_future: SingleFuture::new(),
}
}
pub fn new(network_manager: NetworkManager) -> Self {
let config = network_manager.config();
let this = Self {
config: config.clone(),
inner: Arc::new(Mutex::new(Self::new_inner(network_manager))),
unlocked_inner: Arc::new(Self::new_unlocked_inner(config)),
};
// Set rolling transfers tick task
{
let this2 = this.clone();
this.unlocked_inner
.rolling_transfers_task
.set_routine(move |l, t| {
Box::pin(this2.clone().rolling_transfers_task_routine(l, t))
});
}
// Set bootstrap tick task
{
let this2 = this.clone();
this.unlocked_inner
.bootstrap_task
.set_routine(move |_l, _t| Box::pin(this2.clone().bootstrap_task_routine()));
}
// Set peer minimum refresh tick task
{
let this2 = this.clone();
this.unlocked_inner
.peer_minimum_refresh_task
.set_routine(move |_l, _t| {
Box::pin(this2.clone().peer_minimum_refresh_task_routine())
});
}
// Set ping validator tick task
{
let this2 = this.clone();
this.unlocked_inner
.ping_validator_task
.set_routine(move |l, t| Box::pin(this2.clone().ping_validator_task_routine(l, t)));
}
this
}
pub fn network_manager(&self) -> NetworkManager {
self.inner.lock().network_manager.clone()
}
pub fn rpc_processor(&self) -> RPCProcessor {
self.network_manager().rpc_processor()
}
pub fn node_id(&self) -> DHTKey {
self.inner.lock().node_id
}
pub fn node_id_secret(&self) -> DHTKeySecret {
self.inner.lock().node_id_secret
}
fn with_routing_domain<F, R>(inner: &RoutingTableInner, domain: RoutingDomain, f: F) -> R
where
F: FnOnce(&RoutingDomainDetail) -> R,
{
match domain {
RoutingDomain::PublicInternet => f(&inner.public_internet_routing_domain),
RoutingDomain::LocalNetwork => f(&inner.local_network_routing_domain),
}
}
fn with_routing_domain_mut<F, R>(
inner: &mut RoutingTableInner,
domain: RoutingDomain,
f: F,
) -> R
where
F: FnOnce(&mut RoutingDomainDetail) -> R,
{
match domain {
RoutingDomain::PublicInternet => f(&mut inner.public_internet_routing_domain),
RoutingDomain::LocalNetwork => f(&mut inner.local_network_routing_domain),
}
}
pub fn has_dial_info(&self, domain: RoutingDomain) -> bool {
let inner = self.inner.lock();
Self::with_routing_domain(&*inner, domain, |rd| !rd.dial_info_details.is_empty())
}
pub fn dial_info_details(&self, domain: RoutingDomain) -> Vec<DialInfoDetail> {
let inner = self.inner.lock();
Self::with_routing_domain(&*inner, domain, |rd| rd.dial_info_details.clone())
}
pub fn first_filtered_dial_info_detail(
&self,
domain: Option<RoutingDomain>,
filter: &DialInfoFilter,
) -> Option<DialInfoDetail> {
let inner = self.inner.lock();
// Prefer local network first if it isn't filtered out
if domain == None || domain == Some(RoutingDomain::LocalNetwork) {
Self::with_routing_domain(&*inner, RoutingDomain::LocalNetwork, |rd| {
for did in &rd.dial_info_details {
if did.matches_filter(filter) {
return Some(did.clone());
}
}
None
})
} else {
None
}
.or_else(|| {
if domain == None || domain == Some(RoutingDomain::PublicInternet) {
Self::with_routing_domain(&*inner, RoutingDomain::PublicInternet, |rd| {
for did in &rd.dial_info_details {
if did.matches_filter(filter) {
return Some(did.clone());
}
}
None
})
} else {
None
}
})
}
pub fn all_filtered_dial_info_details(
&self,
domain: Option<RoutingDomain>,
filter: &DialInfoFilter,
) -> Vec<DialInfoDetail> {
let inner = self.inner.lock();
let mut ret = Vec::new();
if domain == None || domain == Some(RoutingDomain::LocalNetwork) {
Self::with_routing_domain(&*inner, RoutingDomain::LocalNetwork, |rd| {
for did in &rd.dial_info_details {
if did.matches_filter(filter) {
ret.push(did.clone());
}
}
});
}
if domain == None || domain == Some(RoutingDomain::PublicInternet) {
Self::with_routing_domain(&*inner, RoutingDomain::PublicInternet, |rd| {
for did in &rd.dial_info_details {
if did.matches_filter(filter) {
ret.push(did.clone());
}
}
});
}
ret.remove_duplicates();
ret
}
pub fn register_dial_info(
&self,
domain: RoutingDomain,
dial_info: DialInfo,
class: DialInfoClass,
) -> Result<(), String> {
trace!(
"registering dial_info with:\n domain: {:?}\n dial_info: {:?}\n class: {:?}",
domain,
dial_info,
class
);
let enable_local_peer_scope = {
let config = self.network_manager().config();
let c = config.get();
c.network.enable_local_peer_scope
};
if !enable_local_peer_scope
&& matches!(domain, RoutingDomain::PublicInternet)
&& dial_info.is_local()
{
return Err("shouldn't be registering local addresses as public".to_owned())
.map_err(logthru_rtab!(error));
}
if !dial_info.is_valid() {
return Err(format!(
"shouldn't be registering invalid addresses: {:?}",
dial_info
))
.map_err(logthru_rtab!(error));
}
let mut inner = self.inner.lock();
Self::with_routing_domain_mut(&mut *inner, domain, |rd| {
rd.dial_info_details.push(DialInfoDetail {
dial_info: dial_info.clone(),
class,
});
rd.dial_info_details.sort();
});
let domain_str = match domain {
RoutingDomain::PublicInternet => "Public",
RoutingDomain::LocalNetwork => "Local",
};
info!(
"{} Dial Info: {}",
domain_str,
NodeDialInfo {
node_id: NodeId::new(inner.node_id),
dial_info
}
.to_string(),
);
debug!(" Class: {:?}", class);
// Public dial info changed, go through all nodes and reset their 'seen our node info' bit
if matches!(domain, RoutingDomain::PublicInternet) {
for bucket in &mut inner.buckets {
for entry in bucket.entries_mut() {
entry.1.set_seen_our_node_info(false);
}
}
}
Ok(())
}
pub fn clear_dial_info_details(&self, domain: RoutingDomain) {
trace!("clearing dial info domain: {:?}", domain);
let mut inner = self.inner.lock();
Self::with_routing_domain_mut(&mut *inner, domain, |rd| {
rd.dial_info_details.clear();
})
}
fn bucket_depth(index: usize) -> usize {
match index {
0 => 256,
1 => 128,
2 => 64,
3 => 32,
4 => 16,
5 => 8,
6 => 4,
7 => 4,
8 => 4,
9 => 4,
_ => 4,
}
}
pub async fn init(&self) -> Result<(), String> {
let mut inner = self.inner.lock();
// Size the buckets (one per bit)
inner.buckets.reserve(DHT_KEY_LENGTH * 8);
for _ in 0..DHT_KEY_LENGTH * 8 {
let bucket = Bucket::new(self.clone());
inner.buckets.push(bucket);
}
// make local copy of node id for easy access
let c = self.config.get();
inner.node_id = c.network.node_id;
inner.node_id_secret = c.network.node_id_secret;
Ok(())
}
pub async fn terminate(&self) {
*self.inner.lock() = Self::new_inner(self.network_manager());
}
// Inform routing table entries that our dial info has changed
pub fn send_node_info_updates(&self) {
let this = self.clone();
// Run in background
intf::spawn(async move {
// Run in background only once
this.clone()
.unlocked_inner
.node_info_update_single_future
.single_spawn(async move {
// Only update if we actually have a valid network class
let netman = this.network_manager();
if matches!(
netman.get_network_class().unwrap_or(NetworkClass::Invalid),
NetworkClass::Invalid
) {
trace!("not sending node info update because our network class is not yet valid");
return;
}
// Get the list of refs to all nodes to update
let node_refs = {
let mut inner = this.inner.lock();
let mut node_refs = Vec::<NodeRef>::with_capacity(inner.bucket_entry_count);
let cur_ts = intf::get_timestamp();
for bucket in &mut inner.buckets {
for entry in bucket.entries_mut() {
match entry.1.state(cur_ts) {
BucketEntryState::Reliable | BucketEntryState::Unreliable => {
// Only update nodes that haven't seen our node info yet
if !entry.1.has_seen_our_node_info() {
node_refs.push(NodeRef::new(
this.clone(),
*entry.0,
entry.1,
None,
));
}
}
BucketEntryState::Dead => {
// do nothing
}
}
}
}
node_refs
};
// Send the updates
log_rtab!("Sending node info updates to {} nodes", node_refs.len());
let mut unord = FuturesUnordered::new();
for nr in node_refs {
let rpc = this.rpc_processor();
unord.push(async move {
// Update the node
if let Err(e) = rpc
.rpc_call_node_info_update(Destination::Direct(nr.clone()), None)
.await
{
// Not fatal, but we should be able to see if this is happening
trace!("failed to send node info update to {:?}: {}", nr, e);
return;
}
// Mark the node as updated
nr.set_seen_our_node_info();
});
}
// Wait for futures to complete
while unord.next().await.is_some() {}
log_rtab!("Finished sending node updates");
})
.await
})
.detach()
}
// Attempt to empty the routing table
// should only be performed when there are no node_refs (detached)
pub fn purge(&self) {
let mut inner = self.inner.lock();
log_rtab!(
"Starting routing table purge. Table currently has {} nodes",
inner.bucket_entry_count
);
for bucket in &mut inner.buckets {
bucket.kick(0);
}
log_rtab!(
"Routing table purge complete. Routing table now has {} nodes",
inner.bucket_entry_count
);
}
// Attempt to settle buckets and remove entries down to the desired number
// which may not be possible due extant NodeRefs
fn kick_bucket(inner: &mut RoutingTableInner, idx: usize) {
let bucket = &mut inner.buckets[idx];
let bucket_depth = Self::bucket_depth(idx);
if let Some(dead_node_ids) = bucket.kick(bucket_depth) {
// Remove counts
inner.bucket_entry_count -= dead_node_ids.len();
log_rtab!("Routing table now has {} nodes", inner.bucket_entry_count);
// Now purge the routing table inner vectors
//let filter = |k: &DHTKey| dead_node_ids.contains(k);
//inner.closest_reliable_nodes.retain(filter);
//inner.fastest_reliable_nodes.retain(filter);
//inner.closest_nodes.retain(filter);
//inner.fastest_nodes.retain(filter);
}
}
fn find_bucket_index(inner: &RoutingTableInner, node_id: DHTKey) -> usize {
distance(&node_id, &inner.node_id)
.first_nonzero_bit()
.unwrap()
}
fn drop_node_ref(&self, node_id: DHTKey) {
// Reduce ref count on entry
let mut inner = self.inner.lock();
let idx = Self::find_bucket_index(&*inner, node_id);
let new_ref_count = {
let bucket = &mut inner.buckets[idx];
let entry = bucket.entry_mut(&node_id).unwrap();
entry.ref_count -= 1;
entry.ref_count
};
// If this entry could possibly go away, kick the bucket
if new_ref_count == 0 {
// it important to do this in the same inner lock as the ref count decrease
Self::kick_bucket(&mut *inner, idx);
}
}
// Create a node reference, possibly creating a bucket entry
// the 'update_func' closure is called on the node, and, if created,
// in a locked fashion as to ensure the bucket entry state is always valid
pub fn create_node_ref<F>(&self, node_id: DHTKey, update_func: F) -> Result<NodeRef, String>
where
F: FnOnce(&mut BucketEntry),
{
// Ensure someone isn't trying register this node itself
if node_id == self.node_id() {
return Err("can't register own node".to_owned()).map_err(logthru_rtab!(error));
}
// Lock this entire operation
let mut inner = self.inner.lock();
// Look up existing entry
let idx = Self::find_bucket_index(&*inner, node_id);
let noderef = {
let bucket = &mut inner.buckets[idx];
let entry = bucket.entry_mut(&node_id);
entry.map(|e| NodeRef::new(self.clone(), node_id, e, None))
};
// If one doesn't exist, insert into bucket, possibly evicting a bucket member
let noderef = match noderef {
None => {
// Make new entry
inner.bucket_entry_count += 1;
log_rtab!("Routing table now has {} nodes", inner.bucket_entry_count);
let bucket = &mut inner.buckets[idx];
let nr = bucket.add_entry(node_id);
// Update the entry
let entry = bucket.entry_mut(&node_id);
update_func(entry.unwrap());
// Kick the bucket
// It is important to do this in the same inner lock as the add_entry
Self::kick_bucket(&mut *inner, idx);
nr
}
Some(nr) => {
// Update the entry
let bucket = &mut inner.buckets[idx];
let entry = bucket.entry_mut(&node_id);
update_func(entry.unwrap());
nr
}
};
Ok(noderef)
}
pub fn lookup_node_ref(&self, node_id: DHTKey) -> Option<NodeRef> {
let mut inner = self.inner.lock();
let idx = Self::find_bucket_index(&*inner, node_id);
let bucket = &mut inner.buckets[idx];
bucket
.entry_mut(&node_id)
.map(|e| NodeRef::new(self.clone(), node_id, e, None))
}
// Shortcut function to add a node to our routing table if it doesn't exist
// and add the dial info we have for it, since that's pretty common
pub fn register_node_with_signed_node_info(
&self,
node_id: DHTKey,
signed_node_info: SignedNodeInfo,
) -> Result<NodeRef, String> {
// validate signed node info is not something malicious
if node_id == self.node_id() {
return Err("can't register own node id in routing table".to_owned());
}
if let Some(rpi) = &signed_node_info.node_info.relay_peer_info {
if rpi.node_id.key == node_id {
return Err("node can not be its own relay".to_owned());
}
}
let nr = self.create_node_ref(node_id, |e| {
e.update_node_info(signed_node_info);
})?;
Ok(nr)
}
// Shortcut function to add a node to our routing table if it doesn't exist
// and add the last peer address we have for it, since that's pretty common
pub fn register_node_with_existing_connection(
&self,
node_id: DHTKey,
descriptor: ConnectionDescriptor,
timestamp: u64,
) -> Result<NodeRef, String> {
let nr = self.create_node_ref(node_id, |e| {
// set the most recent node address for connection finding and udp replies
e.set_last_connection(descriptor, timestamp);
})?;
Ok(nr)
}
fn operate_on_bucket_entry_locked<T, F>(
inner: &mut RoutingTableInner,
node_id: DHTKey,
f: F,
) -> T
where
F: FnOnce(&mut BucketEntry) -> T,
{
let idx = Self::find_bucket_index(&*inner, node_id);
let bucket = &mut inner.buckets[idx];
let entry = bucket.entry_mut(&node_id).unwrap();
f(entry)
}
fn operate_on_bucket_entry<T, F>(&self, node_id: DHTKey, f: F) -> T
where
F: FnOnce(&mut BucketEntry) -> T,
{
let mut inner = self.inner.lock();
Self::operate_on_bucket_entry_locked(&mut *inner, node_id, f)
}
pub fn find_inbound_relay(&self, cur_ts: u64) -> Option<NodeRef> {
let mut inner = self.inner.lock();
let mut best_inbound_relay: Option<NodeRef> = None;
// Iterate all known nodes for candidates
for b in &mut inner.buckets {
for (k, entry) in b.entries_mut() {
// Ensure it's not dead
if !matches!(entry.state(cur_ts), BucketEntryState::Dead) {
// Ensure this node is not on our local network
if !entry
.local_node_info()
.map(|l| l.has_dial_info())
.unwrap_or(false)
{
// Ensure we have the node's status
if let Some(node_status) = &entry.peer_stats().status {
// Ensure the node will relay
if node_status.will_relay {
if let Some(best_inbound_relay) = best_inbound_relay.as_mut() {
if best_inbound_relay.operate(|best| {
BucketEntry::cmp_fastest_reliable(cur_ts, best, entry)
}) == std::cmp::Ordering::Greater
{
*best_inbound_relay =
NodeRef::new(self.clone(), *k, entry, None);
}
} else {
best_inbound_relay =
Some(NodeRef::new(self.clone(), *k, entry, None));
}
}
}
}
}
}
}
best_inbound_relay
}
pub fn register_find_node_answer(&self, fna: FindNodeAnswer) -> Result<Vec<NodeRef>, String> {
let node_id = self.node_id();
// register nodes we'd found
let mut out = Vec::<NodeRef>::with_capacity(fna.peers.len());
for p in fna.peers {
// if our own node if is in the list then ignore it, as we don't add ourselves to our own routing table
if p.node_id.key == node_id {
continue;
}
// register the node if it's new
let nr = self
.register_node_with_signed_node_info(p.node_id.key, p.signed_node_info.clone())
.map_err(map_to_string)
.map_err(logthru_rtab!(
"couldn't register node {} at {:?}",
p.node_id.key,
&p.signed_node_info
))?;
out.push(nr);
}
Ok(out)
}
pub async fn find_node(
&self,
node_ref: NodeRef,
node_id: DHTKey,
) -> Result<Vec<NodeRef>, String> {
let rpc_processor = self.rpc_processor();
let res = rpc_processor
.clone()
.rpc_call_find_node(
Destination::Direct(node_ref.clone()),
node_id,
None,
rpc_processor.make_respond_to_sender(node_ref.clone()),
)
.await
.map_err(map_to_string)
.map_err(logthru_rtab!())?;
log_rtab!(
"find_self for at {:?} answered in {}ms",
&node_ref,
timestamp_to_secs(res.latency) * 1000.0f64
);
// register nodes we'd found
self.register_find_node_answer(res)
}
pub async fn find_self(&self, node_ref: NodeRef) -> Result<Vec<NodeRef>, String> {
let node_id = self.node_id();
self.find_node(node_ref, node_id).await
}
pub async fn find_target(&self, node_ref: NodeRef) -> Result<Vec<NodeRef>, String> {
let node_id = node_ref.node_id();
self.find_node(node_ref, node_id).await
}
pub async fn reverse_find_node(&self, node_ref: NodeRef, wide: bool) {
// Ask bootstrap node to 'find' our own node so we can get some more nodes near ourselves
// and then contact those nodes to inform -them- that we exist
// Ask bootstrap server for nodes closest to our own node
let closest_nodes = match self.find_self(node_ref.clone()).await {
Err(e) => {
log_rtab!(error
"reverse_find_node: find_self failed for {:?}: {}",
&node_ref, e
);
return;
}
Ok(v) => v,
};
// Ask each node near us to find us as well
if wide {
for closest_nr in closest_nodes {
match self.find_self(closest_nr.clone()).await {
Err(e) => {
log_rtab!(error
"reverse_find_node: closest node find_self failed for {:?}: {}",
&closest_nr, e
);
return;
}
Ok(v) => v,
};
}
}
}
async fn resolve_bootstrap(&self, bootstrap: Vec<String>) -> Result<Vec<String>, String> {
let mut out = Vec::<String>::new();
for bh in bootstrap {
//
}
Ok(out)
}
async fn bootstrap_task_routine(self) -> Result<(), String> {
let (bootstrap, bootstrap_nodes) = {
let c = self.config.get();
(
c.network.bootstrap.clone(),
c.network.bootstrap_nodes.clone(),
)
};
log_rtab!("--- bootstrap_task");
// If we aren't specifying a bootstrap node list explicitly, then pull from the bootstrap server(s)
let bootstrap_nodes = if !bootstrap_nodes.is_empty() {
bootstrap_nodes
} else {
// Resolve bootstrap servers and recurse their TXT entries
self.resolve_bootstrap(bootstrap).await?
};
// Map all bootstrap entries to a single key with multiple dialinfo
let mut bsmap: BTreeMap<DHTKey, Vec<DialInfoDetail>> = BTreeMap::new();
for b in bootstrap_nodes {
let ndis = NodeDialInfo::from_str(b.as_str())
.map_err(map_to_string)
.map_err(logthru_rtab!("Invalid dial info in bootstrap entry: {}", b))?;
let node_id = ndis.node_id.key;
bsmap
.entry(node_id)
.or_insert_with(Vec::new)
.push(DialInfoDetail {
dial_info: ndis.dial_info,
class: DialInfoClass::Direct, // Bootstraps are always directly reachable
});
}
log_rtab!(" bootstrap node dialinfo: {:?}", bsmap);
// Run all bootstrap operations concurrently
let mut unord = FuturesUnordered::new();
for (k, v) in bsmap {
log_rtab!(" bootstrapping {} with {:?}", k.encode(), &v);
// Make invalid signed node info (no signature)
let nr = self
.register_node_with_signed_node_info(
k,
SignedNodeInfo::with_no_signature(NodeInfo {
network_class: NetworkClass::InboundCapable, // Bootstraps are always inbound capable
outbound_protocols: ProtocolSet::empty(), // Bootstraps do not participate in relaying and will not make outbound requests
dial_info_detail_list: v, // Dial info is as specified in the bootstrap list
relay_peer_info: None, // Bootstraps never require a relay themselves
}),
)
.map_err(logthru_rtab!("Couldn't add bootstrap node: {}", k))?;
// Add this our futures to process in parallel
let this = self.clone();
unord.push(async move {
// Need VALID signed peer info, so ask bootstrap to find_node of itself
// which will ensure it has the bootstrap's signed peer info as part of the response
let _ = this.find_target(nr.clone()).await;
// Ensure we got the signed peer info
if !nr.operate(|e| e.has_valid_signed_node_info()) {
warn!(
"bootstrap at {:?} did not return valid signed node info",
nr
);
// xxx: delete the node?
} else {
// otherwise this bootstrap is valid, lets ask it to find ourselves now
this.reverse_find_node(nr, true).await
}
});
}
while unord.next().await.is_some() {}
Ok(())
}
///////////////////////////////////////////////////////////
/// Peer ping validation
// Ask our remaining peers to give us more peers before we go
// back to the bootstrap servers to keep us from bothering them too much
async fn peer_minimum_refresh_task_routine(self) -> Result<(), String> {
log_rtab!("--- peer_minimum_refresh task");
// get list of all peers we know about, even the unreliable ones, and ask them to bootstrap too
let noderefs = {
let mut inner = self.inner.lock();
let mut noderefs = Vec::<NodeRef>::with_capacity(inner.bucket_entry_count);
for b in &mut inner.buckets {
for (k, entry) in b.entries_mut() {
noderefs.push(NodeRef::new(self.clone(), *k, entry, None))
}
}
noderefs
};
log_rtab!(" refreshing with nodes: {:?}", noderefs);
// do peer minimum search concurrently
let mut unord = FuturesUnordered::new();
for nr in noderefs {
debug!(" --- peer minimum search with {:?}", nr);
unord.push(self.reverse_find_node(nr, false));
}
while unord.next().await.is_some() {}
Ok(())
}
// Ping each node in the routing table if they need to be pinged
// to determine their reliability
async fn ping_validator_task_routine(self, _last_ts: u64, cur_ts: u64) -> Result<(), String> {
log_rtab!("--- ping_validator task");
let rpc = self.rpc_processor();
let netman = self.network_manager();
let relay_node_id = netman.relay_node().map(|nr| nr.node_id());
let mut inner = self.inner.lock();
for b in &mut inner.buckets {
for (k, entry) in b.entries_mut() {
if entry.needs_ping(k, cur_ts, relay_node_id) {
let nr = NodeRef::new(self.clone(), *k, entry, None);
log_rtab!(
" --- ping validating: {:?} ({})",
nr,
entry.state_debug_info(cur_ts)
);
intf::spawn_local(rpc.clone().rpc_call_status(nr)).detach();
}
}
}
Ok(())
}
// Compute transfer statistics to determine how 'fast' a node is
async fn rolling_transfers_task_routine(self, last_ts: u64, cur_ts: u64) -> Result<(), String> {
log_rtab!("--- rolling_transfers task");
let inner = &mut *self.inner.lock();
// Roll our own node's transfers
inner.self_transfer_stats_accounting.roll_transfers(
last_ts,
cur_ts,
&mut inner.self_transfer_stats,
);
// Roll all bucket entry transfers
for b in &mut inner.buckets {
b.roll_transfers(last_ts, cur_ts);
}
Ok(())
}
// Ticks about once per second
// to run tick tasks which may run at slower tick rates as configured
pub async fn tick(&self) -> Result<(), String> {
// Do rolling transfers every ROLLING_TRANSFERS_INTERVAL_SECS secs
self.unlocked_inner.rolling_transfers_task.tick().await?;
// If routing table is empty, then add the bootstrap nodes to it
if self.inner.lock().bucket_entry_count == 0 {
self.unlocked_inner.bootstrap_task.tick().await?;
}
// If we still don't have enough peers, find nodes until we do
let min_peer_count = {
let c = self.config.get();
c.network.dht.min_peer_count as usize
};
if self.inner.lock().bucket_entry_count < min_peer_count {
self.unlocked_inner.peer_minimum_refresh_task.tick().await?;
}
// Ping validate some nodes to groom the table
self.unlocked_inner.ping_validator_task.tick().await?;
// Keepalive
Ok(())
}
//////////////////////////////////////////////////////////////////////
// Stats Accounting
pub fn stats_question_sent(
&self,
node_ref: NodeRef,
ts: u64,
bytes: u64,
expects_answer: bool,
) {
self.inner
.lock()
.self_transfer_stats_accounting
.add_up(bytes);
node_ref.operate(|e| {
e.question_sent(ts, bytes, expects_answer);
})
}
pub fn stats_question_rcvd(&self, node_ref: NodeRef, ts: u64, bytes: u64) {
self.inner
.lock()
.self_transfer_stats_accounting
.add_down(bytes);
node_ref.operate(|e| {
e.question_rcvd(ts, bytes);
})
}
pub fn stats_answer_sent(&self, node_ref: NodeRef, ts: u64, bytes: u64) {
self.inner
.lock()
.self_transfer_stats_accounting
.add_up(bytes);
node_ref.operate(|e| {
e.answer_sent(ts, bytes);
})
}
pub fn stats_answer_rcvd(&self, node_ref: NodeRef, send_ts: u64, recv_ts: u64, bytes: u64) {
self.inner
.lock()
.self_transfer_stats_accounting
.add_down(bytes);
self.inner
.lock()
.self_latency_stats_accounting
.record_latency(recv_ts - send_ts);
node_ref.operate(|e| {
e.answer_rcvd(send_ts, recv_ts, bytes);
})
}
pub fn stats_question_lost(&self, node_ref: NodeRef, ts: u64) {
node_ref.operate(|e| {
e.question_lost(ts);
})
}
//////////////////////////////////////////////////////////////////////
// Routing Table Health Metrics
pub fn get_routing_table_health(&self) -> RoutingTableHealth {
let mut health = RoutingTableHealth::default();
let cur_ts = intf::get_timestamp();
let inner = self.inner.lock();
for bucket in &inner.buckets {
for entry in bucket.entries() {
match entry.1.state(cur_ts) {
BucketEntryState::Reliable => {
health.reliable_entry_count += 1;
}
BucketEntryState::Unreliable => {
health.unreliable_entry_count += 1;
}
BucketEntryState::Dead => {
health.dead_entry_count += 1;
}
}
}
}
health
}
}