Compare commits

..

No commits in common. "26ff1404a1a1c89729dfc1d10983756f8878bd62" and "45faf97cea0a640992000d03da3753705808ee3c" have entirely different histories.

21 changed files with 62 additions and 704 deletions

3
.gitignore vendored
View File

@ -39,5 +39,4 @@ bin/
.vscode/
### Mac OS ###
.DS_Store
performance.txt
.DS_Store

View File

@ -2,29 +2,8 @@ image: azul/zulu-openjdk:8-latest
stages:
- test
- analyze
# verify the padlock impl independently
unit-test-padlock-impl:
stage: test
script:
- ./gradlew :padlock-impl:test
unit-test-all:
stage: test
script:
- ./gradlew test
artifacts:
when: always
reports:
junit: build/test-results/test/**/TEST-*.xml
run-performance-analyze:
stage: analyze
needs:
- job: unit-test-all
script:
- ./gradlew runPerformanceAnalyze
- cat performance.txt
artifacts:
paths: ['performance.txt']

View File

@ -5,7 +5,7 @@
<option name="linkedExternalProjectsSettings">
<GradleProjectSettings>
<option name="externalProjectPath" value="$PROJECT_DIR$" />
<option name="gradleJvm" value="azul-17" />
<option name="gradleHome" value="" />
<option name="modules">
<set>
<option value="$PROJECT_DIR$" />

View File

@ -48,26 +48,6 @@ You should design the proper architectures for your code.
Last but not least, readability and maintainability are also important.
Take this project as a show off to your designing and coding skills.
## Build
This repo uses Gradle to build and test.
There is a unit test boilerplate and a gradle task configured to
automatically test and evaluate the code when you push your commits.
The `SolutionTestBase` is an abstract class for other tests.
It tests the correctness of your solution and don't care about the run time.
See `SolutionTest` for how to use that.
The `PerformanceAnalyze` is not a unit test, but it do analyze roughly how
fast your solution is. You need to fill in the `solve` method before you run it.
Use `./gradlew test` to run all unit test configured in the project,
and use `./gradlew runPerformanceTest` to get an analysis.
> Note: You don't have to have a local gradle installation.
> The `gradlew` script will download one for you.
> Just install a valid jdk (version >= 8) and very thing should be fine.
## Still have unclear problems?
Feel free to contact Jeffrey Freeman (jeffrey.freeman@cleverthis.com).

View File

@ -1,5 +1,3 @@
import java.io.FileOutputStream
plugins {
id("java")
}
@ -13,7 +11,6 @@ repositories {
dependencies {
implementation(project(":padlock-impl"))
implementation("org.apache.commons", "commons-text", "1.11.0")
// if you ever need import more dependencies, following this format:
// implementation("group-id:project-id:version")
// just like the logback classic
@ -30,15 +27,4 @@ java {
tasks.test {
useJUnitPlatform()
jvmArgs = listOf("-Dfast=true")
}
tasks.register<JavaExec>("runPerformanceAnalyze")
tasks.named<JavaExec>("runPerformanceAnalyze") {
dependsOn("testClasses")
group = "verification"
classpath = sourceSets.test.get().runtimeClasspath
mainClass.set("com.cleverthis.interview.PerformanceAnalyze")
jvmArgs("-Dfast=true")
standardOutput = FileOutputStream("performance.txt")
}

View File

@ -21,5 +21,4 @@ java {
tasks.test {
useJUnitPlatform()
jvmArgs = listOf("-Dfast=true")
}

View File

@ -4,7 +4,6 @@ import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicLong;
import static com.cleverthis.interview.padlock.Utils.ensureSleep;
@ -28,12 +27,10 @@ import static com.cleverthis.interview.padlock.Utils.ensureSleep;
* After create, the input buffer is empty, you have to initialize.
*/
public class PadlockImpl {
private final boolean debug;
private final int numpadSize;
private final Integer[] inputBuffer;
private final Integer[] correctPasscode;
// performance counter
private final AtomicLong writeCounter = new AtomicLong(0);
private final AtomicLong checkCounter = new AtomicLong(0);
/**
* Create a padlock instance.
@ -41,6 +38,17 @@ public class PadlockImpl {
* @param numpadSize The number of buttons on the numpad of this lock.
*/
public PadlockImpl(int numpadSize) {
this(numpadSize, false);
}
/**
* Create a padlock instance.
*
* @param numpadSize The number of buttons on the numpad of this lock.
* @param debug Will skip sleep if is true
*/
PadlockImpl(int numpadSize, boolean debug) {
this.debug = debug;
if (numpadSize < 1) throw new IllegalArgumentException("numpadSize must be a positive number");
this.numpadSize = numpadSize;
this.inputBuffer = new Integer[numpadSize];
@ -65,11 +73,10 @@ public class PadlockImpl {
* @return The old value, null if not initialized.
*/
public synchronized Integer writeInputBuffer(int address, int keyIndex) {
ensureSleep(1000);
if (!debug) ensureSleep(1000);
if (keyIndex < 0 || keyIndex >= numpadSize)
throw new IllegalArgumentException(
"keyIndex out of range. Keypad size: " + numpadSize + ", keyIndex: " + keyIndex);
writeCounter.incrementAndGet();
Integer oldValue = inputBuffer[address];
inputBuffer[address] = keyIndex;
return oldValue;
@ -91,24 +98,10 @@ public class PadlockImpl {
"Passcode invalid: contain duplicated value. " + Arrays.toString(inputBuffer));
uniqueTestArr[i] = true;
}
checkCounter.incrementAndGet();
// if no exception, means:
// every digit is unique, and every digit is initialized
// aka this is a valid code
// now compare with our answer
return Arrays.equals(correctPasscode, inputBuffer);
}
public long getWriteCounter() {
return writeCounter.get();
}
public long getCheckCounter() {
return checkCounter.get();
}
public void resetCounter() {
writeCounter.set(0);
checkCounter.set(0);
}
}
}

View File

@ -1,24 +1,12 @@
package com.cleverthis.interview.padlock;
class Utils {
/**
* Check if the sleep is disabled.
* User can use `-Dfast=true` in the jvm args,
* or change it on the fly.
* Might waste sometime on checking this flag, but the effect should be minor.
* */
private static boolean shouldSkipSleep() {
return Boolean.parseBoolean(System.getProperty("fast"));
}
/**
* Ensure we will wait a given amount of time even if there are interruptions.
* Property `-Dfast=true` can disable the sleep.
*
* @param millis The time you want to sleep, measure in millisecond.
*/
public static void ensureSleep(long millis) {
if (shouldSkipSleep()) return;
long endTime = System.currentTimeMillis() + millis;
while (endTime > System.currentTimeMillis()) {
try {

View File

@ -22,7 +22,7 @@ class PadlockTest {
@Test
void testInstantiationRest() {
PadlockImpl padlock = new PadlockImpl(5);
PadlockImpl padlock = new PadlockImpl(5, true);
for (int i = 0; i < 5; i++) {
// ensure input buffer is uninitialized
// should return null when first set
@ -34,7 +34,7 @@ class PadlockTest {
@Test
void testRejectInvalidInput() {
PadlockImpl padlock = new PadlockImpl(5);
PadlockImpl padlock = new PadlockImpl(5, true);
for (int i = 0; i < 3; i++) {
padlock.writeInputBuffer(i, i);
}
@ -54,7 +54,7 @@ class PadlockTest {
@Test
void testRejectInvalidInputBufferAddressAndValue() {
PadlockImpl padlock = new PadlockImpl(5);
PadlockImpl padlock = new PadlockImpl(5, true);
// test address
assertThrows(ArrayIndexOutOfBoundsException.class, () -> padlock.writeInputBuffer(-1, 1));
assertThrows(ArrayIndexOutOfBoundsException.class, () -> padlock.writeInputBuffer(-10, 1));

View File

@ -1,106 +0,0 @@
package com.cleverthis.interview;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.stream.Stream;
/**
* Brute-forces padlock using lexicographically ordered permutation generation
*
* Algorithm documented at: https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order
*/
public class DumbBruteSolver implements SolverInterface {
/**
* Solves the padlock passed in to the method. The padlock's internal state should be correct after this method
* runs.
* @param padlockAdapter A padlock conforming to the PadlockAdapter contract
*/
@Override
public void solve(PadlockAdapter padlockAdapter) {
int numpadSize = padlockAdapter.getNumpadSize();
Integer[] currentPermutation = new Integer[numpadSize];
for(int i = 0; i < numpadSize; i++) {
currentPermutation[i] = i;
}
while(true) {
boolean isCorrect = checkPermutation(currentPermutation, padlockAdapter);
if (!isCorrect) {
boolean nextPermutationExists = calculateNextPermutation(currentPermutation, numpadSize);
if(!nextPermutationExists) {
return;
}
} else {
return;
}
}
}
/**
* Writes the permutation to the padlock's memory and checks whether this permutation is the correct passcode.
* This is a naive solution that makes no considerations for write-cost.
* @param permutation The permutation to write to the padlock
* @param padlockAdapter The padlock to write to
* @return True if the correct padlock passcode has been found, false otherwise
*/
protected boolean checkPermutation(Integer[] permutation, PadlockAdapter padlockAdapter) {
for(int i = 0; i < padlockAdapter.getNumpadSize(); i++) {
padlockAdapter.writeInputBuffer(i, permutation[i]);
}
return padlockAdapter.isPasscodeCorrect();
}
/**
* Calculates the next permutation in lexicographic order, based on the algorithm linked on wikipedia
* @param currentPermutation The current permutation to run the algorithm on
* @param numpadSize The number of items in the set to be permuted
* @return true if next permutation successfully generated, false if permutations have been exhausted
*/
protected boolean calculateNextPermutation(Integer[] currentPermutation, int numpadSize) {
if(numpadSize < 2) { return false; }
//Integer k, l;
// Find the k and l indices, such that they meet the criteria for the permutation algorithm.
// If such indice values are found, swap them, then reverse the array subset from k+1 to the end of the array
for(int k = (numpadSize - 2); k >= 0; k--) {
if(currentPermutation[k] < currentPermutation[k + 1]) {
for(int l = (numpadSize - 1); l > k; l--) {
if(currentPermutation[k] < currentPermutation[l]) {
// Swap index k value and index l value in permutations array
// TODO: Could be a better swap algorithm
int tempInt = currentPermutation[k];
currentPermutation[k] = currentPermutation[l];
currentPermutation[l] = tempInt;
// Split the currentPermutation array into two slices. The slice happens at index k, with index k
// inclusive to the first slice
Integer[] firstSlice = Arrays.stream(currentPermutation, 0, k + 1).toArray(Integer[]::new);
Integer[] secondSlice = Arrays.stream(currentPermutation, k + 1, numpadSize).toArray(Integer[]::new);
// Reverse the subset of the permutation array from index k+1 to the end of the array
Collections.reverse(Arrays.asList(secondSlice));
// Concat the non-reversed and reversed subarrays into a new permutation
Integer[] newPermutation = Stream.concat(Arrays.stream(firstSlice), Arrays.stream(secondSlice)).toArray(Integer[]::new);
// Copy the new permutation into currentPermutation to return it
System.arraycopy(newPermutation, 0, currentPermutation, 0, numpadSize);
return true;
}
}
}
}
return false;
}
}

View File

@ -1,62 +0,0 @@
package com.cleverthis.interview;
import org.apache.commons.text.similarity.LevenshteinDistance;
/**
* A wrapper class that holds possible padlock passcode permutations in an integer array. This class
* overloads the toString() method and is comparable, using its string value to calculate the levenshtein distance and
* use those distance values for sorting into a data structure.
*/
public class IntegerLevenshtein implements Comparable<IntegerLevenshtein> {
private Integer[] integerData;
private Integer size;
/**
* Creates a new IntegerLevenshtein
* @param size The number of integers (keypad size) of the passcode
*/
public IntegerLevenshtein(int size) {
this.integerData = new Integer[size];
this.size = size;
}
/**
* Sets the integer data array
* @param integerData The new integer data
*/
public void setIntegerData(Integer[] integerData) {
this.integerData = integerData.clone();
}
/**
* Gets the integer data array
* @return the integer data
*/
public Integer[] getIntegerData() {
return this.integerData;
}
/**
* Casts each integer to a string and concatenates them together into a single string.
* For example, an internal integer array of [1,2,3,4] will be returned as the string "1234".
* @return A string representation of the integer array.
*/
public String toString() {
String temp = new String();
for(int i = 0; i < size; i++) {
temp = temp.concat(integerData[i].toString());
}
return temp;
}
/**
* Overriden compareTo method that compares the calculated levenshtein distance between two IntegerLevenshtein objects
* @param otherInteger the object to be compared.
* @return The levenshtein distance between the two objects.
*/
@Override
public int compareTo(IntegerLevenshtein otherInteger) {
LevenshteinDistance levenshtein = LevenshteinDistance.getDefaultInstance();
return levenshtein.apply(this.toString(), otherInteger.toString());
}
}

View File

@ -1,47 +0,0 @@
package com.cleverthis.interview;
/**
* This defines the interface that padlocks must conform to.
* Concrete implementations will be adapted to this interface contract through concrete adapter classes.
*/
public interface PadlockAdapter {
/**
* Get the size of the padlock's physical number pad
*
* @return A count of the physical buttons on the padlock
*/
int getNumpadSize();
/**
* Write key presses to the input buffer of the padlock
* @param address The position / index of the button that is pressed. For example, address 0 is the first button pressed.
* @param keyIndex The value of the button that is pressed. Cannot be greater than the numpad size, as the buttons increment
* sequentially
* @return The old value of keyIndex at the inputted address
*/
Integer writeInputBuffer(int address, int keyIndex);
/**
* Check whether the inputted password is correct
* @return True if password is correct, false otherwise
*/
boolean isPasscodeCorrect();
/**
* Returns the write counter
* @return The number of times a write operation has occurred
*/
long getWriteCounter();
/**
* Returns the check counter
* @return The number of times the password has been checked for correctness
*/
long getCheckCounter();
/**
* Resets both the check and write counters
*/
void resetCounter();
}

View File

@ -1,49 +0,0 @@
package com.cleverthis.interview;
import com.cleverthis.interview.padlock.PadlockImpl;
/**
* The concrete implementation of PadlockAdapter that communicates with the padlock directly through a Java
* class. This implementation also contains a cache that it keeps in sync with the underlying API, as a front-line
* optimization against unnecessary write operations.
*/
public class PadlockJavaAdapter extends PadlockImpl implements PadlockAdapter {
/**
* Intermediate cache between the underlying padlock API and any code that interfaces with the PadlockAdapter
* API.
*/
private final Integer[] inputBufferState;
/**
* Create a padlock instance.
*
* @param numpadSize The number of buttons on the numpad of this lock.
*/
public PadlockJavaAdapter(int numpadSize) {
super(numpadSize);
inputBufferState = new Integer[numpadSize];
for(int i = 0; i < this.getNumpadSize(); i++) {
inputBufferState[i] = i;
super.writeInputBuffer(i, i);
}
}
/**
* Writes to the underlying input buffer, but only if the cache shows that the write is necessary
* @param address The position / index of the button that is pressed. For example, address 0 is the first button pressed.
* @param keyIndex The value of the button that is pressed. Cannot be greater than the numpad size, as the buttons increment
* sequentially
* @return The old value that was replaced, which is the same as keyIndex if a write operation doesn't actually occur.
*/
@Override
public Integer writeInputBuffer(int address, int keyIndex) {
if(inputBufferState[address] != keyIndex) {
inputBufferState[address] = keyIndex;
return super.writeInputBuffer(address, keyIndex);
} else {
return keyIndex;
}
}
}

View File

@ -0,0 +1,13 @@
package com.cleverthis.interview;
import com.cleverthis.interview.padlock.PadlockImpl;
/**
* This is a placeholder class showing a simple boilerplate.
* This class is not required, so you can replace with your own architecture.
*/
public class Solution {
public void solve(PadlockImpl padlock) {
throw new RuntimeException("TODO");
}
}

View File

@ -1,13 +0,0 @@
package com.cleverthis.interview;
/**
* Interface that defines the class signature for solver implementations
*/
public interface SolverInterface {
/**
* Solves the padlock passed in that conforms to the PadlockAdapter interface
* @param padlockAdapter the padlock object to solve
*/
void solve(PadlockAdapter padlockAdapter);
}

View File

@ -1,90 +0,0 @@
package com.cleverthis.interview;
import java.util.Iterator;
import java.util.TreeSet;
import org.apache.commons.text.similarity.LevenshteinDistance;
/**
* This is a write-aware brute solver implementation that uses the levenshtein distance to sort passcode permutations
* into a tree. Walking the tree in-order (Likely a depth-first traversal internally) results in a naive nearest-neighbor
* optimization that generally performs well, but may perform poorly in some cases. Heuristic solutions exist that have
* acceptable performance, and this is a more naive heuristic implementation.
*
* This permutation optimization problem is NP-hard and can be represented as the traveling salesperson problem.
* Representing passcode permutations as vertices and the levenshtein distance as edges in an undirected, weighted graph,
* an optimal solution is the shortest path satisfying a tour of the entire graph.
*
* A more advanced solution (based on Christofides, or another TSP heuristic) may result in more performance gains, but
* the performance of this nearest-neighbor solution is adequate for the keypad sizes under test. A keypad size of 9
* results in a graph of vertex-count 9!. It's unlikely performance gains from a more intelligent TSP solver would
* offset the performance cost of building a graph and optimizing traversal.
*/
public class WriteAwareBruteSolver extends DumbBruteSolver {
private final TreeSet<IntegerLevenshtein> orderedTree;
private Integer numpadSize;
/**
* Creates an ordered tree on instantiation to be used as a cache for subsequent brute-force solves.
* @param numpadSize The size of the padlock's numpad, used in generation of the internal ordered tree
*/
public WriteAwareBruteSolver(int numpadSize) {
orderedTree = new TreeSet<IntegerLevenshtein>();
this.numpadSize = numpadSize;
this.createOrderedTree(numpadSize);
}
/**
* Solves the padlock passed in to the method. The padlock's internal state should be correct after this method
* runs.
* @param padlockAdapter A padlock conforming to the PadlockAdapter contract
*/
@Override
public void solve(PadlockAdapter padlockAdapter) {
int padlockNumpadSize = padlockAdapter.getNumpadSize();
if (this.numpadSize != padlockNumpadSize) {
this.createOrderedTree(padlockNumpadSize);
}
for (IntegerLevenshtein integerLevenshtein : orderedTree) {
if (this.checkPermutation(integerLevenshtein.getIntegerData(), padlockAdapter)) {
return;
}
}
}
/**
* Returns the size of the tree (the number of possible permutations)
* @return the size of the ordered tree
*/
public Integer getTreeSize() {
return this.orderedTree.size();
}
/**
* Creates an ordered tree of possible passcode permutations
* @param size The number of keys on the numpad
*/
protected void createOrderedTree(int size) {
if(this.numpadSize != size) {
this.numpadSize = size;
orderedTree.clear();
}
Integer[] currentPermutation = new Integer[numpadSize];
for(int i = 0; i < numpadSize; i++) {
currentPermutation[i] = i;
}
boolean morePermutationsExist = true;
do {
IntegerLevenshtein levenshteinPermutation = new IntegerLevenshtein(numpadSize);
levenshteinPermutation.setIntegerData(currentPermutation);
orderedTree.add(levenshteinPermutation);
morePermutationsExist = this.calculateNextPermutation(currentPermutation, numpadSize);
} while(morePermutationsExist);
}
}

View File

@ -1,102 +0,0 @@
package com.cleverthis.interview;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;
/**
* Tests for DumbBruteSolver class
*
* Tests that lexicographically ordered permutations are properly calculated, and that the solver works
*/
public class DumbBruteSolverTest extends SolutionTestBase {
/**
* Overridden method that tests in SolutionTestBase.class expect defined and calls.
* Creates a DumbBruteSolver and calls the solve() method.
* @param padlock The padlock to solve
*/
@Override
protected void solve(PadlockAdapter padlock) {
new DumbBruteSolver().solve(padlock);
}
/**
* Check whether a 7-button padlock can be solved
*/
@Test
protected void testSolver() {
DumbBruteSolver dumbSolver = new DumbBruteSolver();
PadlockJavaAdapter padlock = new PadlockJavaAdapter(7);
dumbSolver.solve(padlock);
assertTrue(padlock.isPasscodeCorrect());
}
/**
* Check whether the next permutation is calculated correctly
*/
@Test
protected void testOnePermutation() {
DumbBruteSolver dumbSolver = new DumbBruteSolver();
Integer[] permutation = new Integer[] {1, 2, 3, 4};
Integer[] correctPermutation = new Integer[] {1, 2, 4, 3};
dumbSolver.calculateNextPermutation(permutation, 4);
assertArrayEquals(permutation, correctPermutation);
}
/**
* Check whether two consecutive permutations are correct
*/
@Test
protected void testTwoPermutations() {
DumbBruteSolver dumbSolver = new DumbBruteSolver();
Integer[] permutation = new Integer[] {1, 2, 3, 4};
Integer[] correctPermutation = new Integer[] {1, 3, 2, 4};
for(int i = 0; i < 2; i++) {
dumbSolver.calculateNextPermutation(permutation, 4);
}
assertArrayEquals(permutation, correctPermutation);
}
/**
* Check whether 23 consecutive permutations are correct
*/
@Test
protected void test23Permutations() {
DumbBruteSolver dumbSolver = new DumbBruteSolver();
Integer[] permutation = new Integer[] {1, 2, 3, 4};
Integer[] correctPermutation = new Integer[] {4, 3, 2, 1};
for(int i = 0; i < 23; i++) {
dumbSolver.calculateNextPermutation(permutation, 4);
}
assertArrayEquals(permutation, correctPermutation);
}
/**
* Check whether the 24th permutation returns false, signifying we've exhausted all possible permutations
* for a list of size 4
*/
@Test
protected void test24Permutations() {
DumbBruteSolver dumbSolver = new DumbBruteSolver();
Integer[] permutation = new Integer[] {1, 2, 3, 4};
for(int i = 0; i < 23; i++) {
assertTrue(dumbSolver.calculateNextPermutation(permutation, 4));
}
assertFalse(dumbSolver.calculateNextPermutation(permutation, 4));
}
}

View File

@ -1,51 +0,0 @@
package com.cleverthis.interview;
import com.cleverthis.interview.padlock.PadlockImpl;
/**
* Performance test but not mean to run in unit test.
*/
public class PerformanceAnalyze {
private static final int TOTAL_RUN = 500;
private static final int NUMPAD_SIZE = 9;
/**
* The solver object reference is held between tests, because the data structure used for optimization does not
* change between runs and keeping it in memory greatly increases performance.
*/
static WriteAwareBruteSolver solver = new WriteAwareBruteSolver(NUMPAD_SIZE);
private static void solve(PadlockAdapter padlock) {
solver.solve(padlock);
}
static {
System.out.println("Total run: " + TOTAL_RUN);
System.out.println("Numpad size: " + NUMPAD_SIZE);
}
public static void main(String[] args) {
long timeSum = 0;
long writeSum = 0;
for (int i = 0; i < TOTAL_RUN; i++) {
PadlockAdapter padlock = new PadlockJavaAdapter(NUMPAD_SIZE);
padlock.resetCounter();
long start = System.currentTimeMillis();
solve((PadlockAdapter) padlock);
long end = System.currentTimeMillis();
if (!padlock.isPasscodeCorrect()) throw new IllegalStateException(
"Invalid solution: passcode not correct after return");
long dT = end - start;
timeSum += dT;
writeSum += padlock.getWriteCounter();
System.out.println("Run #" + (i + 1) + ": time: " + dT + "ms; write: " + padlock.getWriteCounter());
}
System.out.println("Run time sum: " + timeSum + "ms");
System.out.println("Write sum: " + writeSum);
double avgTime = timeSum / (double) TOTAL_RUN;
double avgWrite = writeSum / (double) TOTAL_RUN;
System.out.println("Avg run time: " + avgTime + "ms");
System.out.println("Avg write: " + avgWrite);
System.out.println("Calculated estimate avg run time: " + (avgTime / 1000 + avgTime) + "s");
}
}

View File

@ -0,0 +1,30 @@
package com.cleverthis.interview;
import com.cleverthis.interview.padlock.PadlockImpl;
import org.junit.jupiter.api.Test;
import java.util.Random;
import static org.junit.jupiter.api.Assertions.*;
/**
* This is a simple placeholder to show how unit test works.
* You can replace it with your own test.
*/
class SolutionTest {
private void solve(PadlockImpl padlock) {
new Solution().solve(padlock);
}
@Test
void verify(){
Random random = new Random();
PadlockImpl padlock = new PadlockImpl(random.nextInt(1, 8));
long startTime = System.currentTimeMillis();
solve(padlock);
long endTime = System.currentTimeMillis();
assertTrue(padlock.isPasscodeCorrect());
System.out.println("Time usage: " + (endTime - startTime) + "ms");
}
}

View File

@ -1,34 +0,0 @@
package com.cleverthis.interview;
import com.cleverthis.interview.padlock.PadlockImpl;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertTrue;
/**
* This is a base class for verifying the correctness of the solution.
*/
public abstract class SolutionTestBase {
/**
* Implement your solution in this function.
* */
protected abstract void solve(PadlockAdapter padlock);
protected void verify(int numpadSize) {
PadlockAdapter padlock = new PadlockJavaAdapter(numpadSize);
solve(padlock);
assertTrue(padlock.isPasscodeCorrect());
}
/**
* Tests padlocks with numpad sizes of 1 to 7. This test runs for every class that extends this SolutionTestBase
* abstract class.
*/
@Test
void verify1to7() {
for (int i = 1; i <= 7; i++) {
verify(i);
}
}
}

View File

@ -1,55 +0,0 @@
package com.cleverthis.interview;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
/**
* Tests for WriteAwareBruteSolver class
*
* These tests do not keep a long-lived reference to WriteAwareBruteSolver, instead opting
* to reconstruct the permutation tree for every test. This is a trade-off between performance
* and avoiding any inadvertent behavior changes from state persisting between tests.
*/
public class WriteAwareBruteSolverTest extends SolutionTestBase {
/**
* Overridden method that tests in SolutionTestBase.class expect defined and calls.
* Creates a WriteAwareBruteSolver and calls the solve() method.
* @param padlock The padlock to solve
*/
@Override
protected void solve(PadlockAdapter padlock) {
new WriteAwareBruteSolver(padlock.getNumpadSize()).solve(padlock);
}
/**
* Tests whether the solver can brute-force a 7-numpad padlock.
*/
@Test
protected void testSolver() {
Integer numpadSize = 7;
WriteAwareBruteSolver writeAwareSolver = new WriteAwareBruteSolver(numpadSize);
PadlockJavaAdapter padlock = new PadlockJavaAdapter(numpadSize);
writeAwareSolver.solve(padlock);
assertTrue(padlock.isPasscodeCorrect());
}
/**
* Tests whether a numpad-size of 4 is correctly expanded to 24 possible permutations in the underlying
* tree
*/
@Test
protected void testTreeSize() {
Integer numpadSize = 4;
WriteAwareBruteSolver writeAwareSolver = new WriteAwareBruteSolver(numpadSize);
PadlockJavaAdapter padlock = new PadlockJavaAdapter(4);
writeAwareSolver.solve(padlock);
assertEquals(writeAwareSolver.getTreeSize(), 24);
}
}