Core api concept (#144)

* add input debounce code from old fw

* exampl of input api

* change input API to get/release

* revert input API to read

* pointer instead of instance

* add input API description

* add display API

* rewrite display names

* migrate to valuemanager

* add LED API

* add closing brakets

* add sound api

* fix led api

* basic api

* rename API pages

* change pubsub implementation

* move FURI AC -> flapp, add valuemutex example, add valuemanager implementation

* pubsub usage example

* user led example

* update example

* simplify input

* add composed display

* add SPI/GPIO and CC1101 bus

* change cc1101 api

* spi api and devices

* spi api and devices

* move SPI to page, add GPIO

* not block pin open

* backlight API and more

* add minunit tests

* fix logging

* ignore unexisting time service on embedded targets

* fix warning, issue with printf

* Deprecate furi_open and furi_close (#167)

Rename existing furi_open and furi_close to deprecated version

* add exitcode

* migrate to printf

* indicate test by leds

* add testing description

* rename furi.h

* wip basic api

* add valuemutex, pubsub, split files

* add value expanders

* value mutex realization and tests

* valuemutex test added to makefile

* do not build unimplemented files

* fix build furmware target f2

* redesigned minunit tests to allow testing in separate files

* test file for valuemutex minunit testing

* minunit partial test valuemutex

* local cmsis_os2 mutex bindings

* implement furi open/create, tests

* migrate concurrent_access to ValueMutex

* add spi header

* Lib: add mlib submodule.

Co-authored-by: rusdacent <rusdacentx0x08@gmail.com>
Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
This commit is contained in:
coreglitch 2020-10-13 14:22:43 +06:00 committed by GitHub
parent b7c30154f4
commit 942bbfaefe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
51 changed files with 1874 additions and 692 deletions

3
.gitmodules vendored
View File

@ -1,3 +1,6 @@
[submodule "lib/STM32CubeL4"]
path = lib/STM32CubeL4
url = https://github.com/STMicroelectronics/STM32CubeL4.git
[submodule "lib/mlib"]
path = lib/mlib
url = https://github.com/P-p-H-d/mlib.git

View File

@ -16,6 +16,7 @@ C_SOURCES += $(APP_DIR)/tests/furiac_test.c
C_SOURCES += $(APP_DIR)/tests/furi_record_test.c
C_SOURCES += $(APP_DIR)/tests/test_index.c
C_SOURCES += $(APP_DIR)/tests/minunit_test.c
C_SOURCES += $(APP_DIR)/tests/furi_valuemutex_test.c
endif
APP_EXAMPLE_BLINK ?= 0

View File

@ -9,7 +9,8 @@ void coreglitch_demo_0(void* p) {
fuprintf(log, "coreglitch demo!\n");
// open record
FuriRecordSubscriber* fb_record = furi_open("u8g2_fb", false, false, NULL, NULL, NULL);
FuriRecordSubscriber* fb_record =
furi_open_deprecated("u8g2_fb", false, false, NULL, NULL, NULL);
if(fb_record == NULL) {
fuprintf(log, "[widget] cannot create fb record\n");

View File

@ -143,7 +143,7 @@ void display_u8g2(void* p) {
&_u8g2); // send init sequence to the display, display is in sleep mode after this
u8g2_SetContrast(&_u8g2, 36);
if(!furi_create("u8g2_fb", (void*)&_u8g2, sizeof(_u8g2))) {
if(!furi_create_deprecated("u8g2_fb", (void*)&_u8g2, sizeof(_u8g2))) {
fuprintf(log, "[display_u8g2] cannot create fb record\n");
furiac_exit(NULL);
}
@ -162,7 +162,7 @@ void display_u8g2(void* p) {
// subscribe to record. ctx will be passed to handle_fb_change
FuriRecordSubscriber* fb_record =
furi_open("u8g2_fb", false, false, handle_fb_change, NULL, &ctx);
furi_open_deprecated("u8g2_fb", false, false, handle_fb_change, NULL, &ctx);
if(fb_record == NULL) {
fuprintf(log, "[display] cannot open fb record\n");

View File

@ -49,14 +49,14 @@ void fatfs_list(void* p) {
furi_log = get_default_log();
FuriRecordSubscriber* fb_record = furi_open("u8g2_fb", false, false, NULL, NULL, NULL);
FuriRecordSubscriber* fb_record = furi_open_deprecated("u8g2_fb", false, false, NULL, NULL, NULL);
if(fb_record == NULL) {
fuprintf(furi_log, "[widget][fatfs_list] cannot create fb record\n");
furiac_exit(NULL);
}
FuriRecordSubscriber* event_record =
furi_open("input_events", false, false, event_cb, NULL, event_queue);
furi_open_deprecated("input_events", false, false, event_cb, NULL, event_queue);
if(event_record == NULL) {
fuprintf(furi_log, "[widget][fatfs_list] cannot register input_events callback\n");
furiac_exit(NULL);

View File

@ -16,9 +16,9 @@ static void event_cb(const void* value, size_t size, void* ctx) {
void application_input_dump(void* p) {
// open record
FuriRecordSubscriber* state_record =
furi_open("input_state", false, false, state_cb, NULL, NULL);
furi_open_deprecated("input_state", false, false, state_cb, NULL, NULL);
FuriRecordSubscriber* event_record =
furi_open("input_events", false, false, event_cb, NULL, NULL);
furi_open_deprecated("input_events", false, false, event_cb, NULL, NULL);
for(;;) {
delay(100);

View File

@ -60,7 +60,7 @@ void application_ipc_display(void* p) {
}
// create record
if(!furi_create("test_fb", (void*)_framebuffer, FB_SIZE)) {
if(!furi_create_deprecated("test_fb", (void*)_framebuffer, FB_SIZE)) {
fuprintf(log, "[display] cannot create fb record\n");
furiac_exit(NULL);
}
@ -79,7 +79,7 @@ void application_ipc_display(void* p) {
// subscribe to record. ctx will be passed to handle_fb_change
FuriRecordSubscriber* fb_record =
furi_open("test_fb", false, false, handle_fb_change, NULL, &ctx);
furi_open_deprecated("test_fb", false, false, handle_fb_change, NULL, &ctx);
if(fb_record == NULL) {
fuprintf(log, "[display] cannot open fb record\n");
@ -124,7 +124,8 @@ void application_ipc_widget(void* p) {
FuriRecordSubscriber* log = get_default_log();
// open record
FuriRecordSubscriber* fb_record = furi_open("test_fb", false, false, NULL, NULL, NULL);
FuriRecordSubscriber* fb_record =
furi_open_deprecated("test_fb", false, false, NULL, NULL, NULL);
if(fb_record == NULL) {
fuprintf(log, "[widget] cannot create fb record\n");

View File

@ -5,7 +5,7 @@ void u8g2_example(void* p) {
FuriRecordSubscriber* log = get_default_log();
// open record
FuriRecordSubscriber* fb_record = furi_open("u8g2_fb", false, false, NULL, NULL, NULL);
FuriRecordSubscriber* fb_record = furi_open_deprecated("u8g2_fb", false, false, NULL, NULL, NULL);
if(fb_record == NULL) {
fuprintf(log, "[widget] cannot create fb record\n");

View File

@ -14,7 +14,7 @@ void u8g2_qrcode(void* p) {
FuriRecordSubscriber* log = get_default_log();
// open record
FuriRecordSubscriber* fb_record = furi_open("u8g2_fb", false, false, NULL, NULL, NULL);
FuriRecordSubscriber* fb_record = furi_open_deprecated("u8g2_fb", false, false, NULL, NULL, NULL);
// Allocate a chunk of memory to store the QR code
// https://github.com/ricmoo/QRCode

View File

@ -1,7 +1,7 @@
#include <input/input.h>
#include <input_priv.h>
#include <stdio.h>
#include <furi.h>
#include <flipper.h>
static volatile bool initialized = false;
static SemaphoreHandle_t event;
@ -16,25 +16,25 @@ void input_task(void* p) {
event = xSemaphoreCreateCountingStatic(1, 0, &event_semaphore);
if(!furi_create("input_state", (void*)&input_state, sizeof(input_state))) {
if(!furi_create_deprecated("input_state", (void*)&input_state, sizeof(input_state))) {
printf("[input_task] cannot create the input_state record\n");
furiac_exit(NULL);
}
FuriRecordSubscriber* input_state_record =
furi_open("input_state", false, false, NULL, NULL, NULL);
furi_open_deprecated("input_state", false, false, NULL, NULL, NULL);
if(input_state_record == NULL) {
printf("[input_task] cannot open the input_state record\n");
furiac_exit(NULL);
}
if(!furi_create("input_events", NULL, 0)) {
if(!furi_create_deprecated("input_events", NULL, 0)) {
printf("[input_task] cannot create the input_events record\n");
furiac_exit(NULL);
}
FuriRecordSubscriber* input_events_record =
furi_open("input_events", false, false, NULL, NULL, NULL);
furi_open_deprecated("input_events", false, false, NULL, NULL, NULL);
if(input_events_record == NULL) {
printf("[input_task] cannot open the input_events record\n");
furiac_exit(NULL);

View File

@ -1,6 +1,6 @@
#pragma once
#include "furi.h"
#include "flipper.h"
#define FURI_LIB (const char*[])

View File

@ -1,245 +1,18 @@
#include <stdio.h>
#include <string.h>
#include "flipper.h"
#include "flipper_v2.h"
#include "log.h"
#include "minunit.h"
/*
TEST: pipe record
1. create pipe record
2. Open/subscribe to it
3. write data
4. check that subscriber get data
5. try to read, get error
6. close record
7. try to write, get error
*/
static uint8_t pipe_record_value = 0;
void pipe_record_cb(const void* value, size_t size, void* ctx) {
// hold value to static var
pipe_record_value = *((uint8_t*)value);
}
bool test_furi_pipe_record() {
// 1. create pipe record
if(!furi_create("test/pipe", NULL, 0)) {
printf("cannot create record\n");
return false;
}
// 2. Open/subscribe to it
FuriRecordSubscriber* pipe_record =
furi_open("test/pipe", false, false, pipe_record_cb, NULL, NULL);
if(pipe_record == NULL) {
printf("cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
printf("cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(pipe_record_value != WRITE_VALUE) {
printf("wrong value (get %d, write %d)\n", pipe_record_value, WRITE_VALUE);
return false;
}
// 5. try to read, get error
uint8_t read_value = 0;
if(furi_read(pipe_record, &read_value, sizeof(uint8_t))) {
printf("reading from pipe record not allowed\n");
return false;
}
// 6. close record
furi_close(pipe_record);
// 7. try to write, get error
if(furi_write(pipe_record, &WRITE_VALUE, sizeof(uint8_t))) {
printf("writing to closed record not allowed\n");
return false;
}
return true;
}
/*
TEST: holding data
1. Create holding record
2. Open/Subscribe on it
3. Write data
4. Check that subscriber get data
5. Read and check data
6. Try to write/read wrong size of data
*/
static uint8_t holding_record_value = 0;
void holding_record_cb(const void* value, size_t size, void* ctx) {
// hold value to static var
holding_record_value = *((uint8_t*)value);
}
bool test_furi_holding_data() {
// 1. Create holding record
uint8_t holder = 0;
if(!furi_create("test/holding", (void*)&holder, sizeof(holder))) {
printf("cannot create record\n");
return false;
}
// 2. Open/Subscribe on it
FuriRecordSubscriber* holding_record =
furi_open("test/holding", false, false, holding_record_cb, NULL, NULL);
if(holding_record == NULL) {
printf("cannot open record\n");
return false;
}
const uint8_t WRITE_VALUE = 1;
// 3. write data
if(!furi_write(holding_record, &WRITE_VALUE, sizeof(uint8_t))) {
printf("cannot write to record\n");
return false;
}
// 4. check that subscriber get data
if(holding_record_value != WRITE_VALUE) {
printf("wrong sub value (get %d, write %d)\n", holding_record_value, WRITE_VALUE);
return false;
}
// 5. Read and check data
uint8_t read_value = 0;
if(!furi_read(holding_record, &read_value, sizeof(uint8_t))) {
printf("cannot read from record\n");
return false;
}
if(read_value != WRITE_VALUE) {
printf("wrong read value (get %d, write %d)\n", read_value, WRITE_VALUE);
return false;
}
// 6. Try to write/read wrong size of data
if(furi_write(holding_record, &WRITE_VALUE, 100)) {
printf("overflowed write not allowed\n");
return false;
}
if(furi_read(holding_record, &read_value, 100)) {
printf("overflowed read not allowed\n");
return false;
}
return true;
}
/*
TEST: concurrent access
1. Create holding record
2. Open it twice
3. Change value simultaneously in two app and check integrity
*/
// TODO this test broke because mutex in furi is not implemented
typedef struct {
// a and b must be equal
uint8_t a;
uint8_t b;
} ConcurrentValue;
void furi_concurent_app(void* p) {
FuriRecordSubscriber* holding_record =
furi_open("test/concurrent", false, false, NULL, NULL, NULL);
if(holding_record == NULL) {
printf("cannot open record\n");
furiac_exit(NULL);
}
for(size_t i = 0; i < 10; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(holding_record);
if(value == NULL) {
printf("cannot take record\n");
furi_give(holding_record);
furiac_exit(NULL);
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
delay(2); // this is only for test, do not add delay between take/give in prod!
value->a = a;
value->b = b;
furi_give(holding_record);
}
furiac_exit(NULL);
}
bool test_furi_concurrent_access() {
// 1. Create holding record
ConcurrentValue holder = {.a = 0, .b = 0};
if(!furi_create("test/concurrent", (void*)&holder, sizeof(ConcurrentValue))) {
printf("cannot create record\n");
return false;
}
void test_furi_create_open() {
// 1. Create record
uint8_t test_data = 0;
mu_check(furi_create("test/holding", (void*)&test_data));
// 2. Open it
FuriRecordSubscriber* holding_record =
furi_open("test/concurrent", false, false, NULL, NULL, NULL);
if(holding_record == NULL) {
printf("cannot open record\n");
return false;
}
// 3. Create second app for interact with it
FuriApp* second_app = furiac_start(furi_concurent_app, "furi concurent app", NULL);
// 4. multiply ConcurrentValue::a
for(size_t i = 0; i < 4; i++) {
ConcurrentValue* value = (ConcurrentValue*)furi_take(holding_record);
if(value == NULL) {
printf("cannot take record\n");
furi_give(holding_record);
return false;
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
value->a = a;
delay(10); // this is only for test, do not add delay between take/give in prod!
value->b = b;
furi_give(holding_record);
}
delay(50);
if(second_app->handler != NULL) {
printf("second app still alive\n");
return false;
}
if(holder.a != holder.b) {
printf("broken integrity: a=%d, b=%d\n", holder.a, holder.b);
return false;
}
return true;
void* record = furi_open("test/holding");
mu_assert_pointers_eq(record, &test_data);
}
/*
@ -309,14 +82,14 @@ void mute_record_state_cb(FlipperRecordState state, void* ctx) {
void furi_mute_parent_app(void* p) {
// 1. Create pipe record
if(!furi_create("test/mute", NULL, 0)) {
if(!furi_create_deprecated("test/mute", NULL, 0)) {
printf("cannot create record\n");
furiac_exit(NULL);
}
// 2. Open watch handler: solo=false, no_mute=false, subscribe to data
FuriRecordSubscriber* watch_handler =
furi_open("test/mute", false, false, mute_record_cb, NULL, NULL);
furi_open_deprecated("test/mute", false, false, mute_record_cb, NULL, NULL);
if(watch_handler == NULL) {
printf("cannot open watch handler\n");
furiac_exit(NULL);
@ -336,7 +109,7 @@ bool test_furi_mute_algorithm() {
// 2. Open handler A: solo=false, no_mute=false, NULL subscriber. Subscribe to state.
FuriRecordSubscriber* handler_a =
furi_open("test/mute", false, false, NULL, mute_record_state_cb, NULL);
furi_open_deprecated("test/mute", false, false, NULL, mute_record_state_cb, NULL);
if(handler_a == NULL) {
printf("cannot open handler A\n");
return false;
@ -356,7 +129,8 @@ bool test_furi_mute_algorithm() {
}
// 3. Open handler B: solo=true, no_mute=true, NULL subscriber.
FuriRecordSubscriber* handler_b = furi_open("test/mute", true, true, NULL, NULL, NULL);
FuriRecordSubscriber* handler_b =
furi_open_deprecated("test/mute", true, true, NULL, NULL, NULL);
if(handler_b == NULL) {
printf("cannot open handler B\n");
return false;
@ -395,7 +169,8 @@ bool test_furi_mute_algorithm() {
}
// 4. Open hadler C: solo=true, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_c = furi_open("test/mute", true, false, NULL, NULL, NULL);
FuriRecordSubscriber* handler_c =
furi_open_deprecated("test/mute", true, false, NULL, NULL, NULL);
if(handler_c == NULL) {
printf("cannot open handler C\n");
return false;
@ -406,7 +181,8 @@ bool test_furi_mute_algorithm() {
// TODO: Try to write data to C and check that subscriber get data.
// 5. Open handler D: solo=false, no_mute=false, NULL subscriber.
FuriRecordSubscriber* handler_d = furi_open("test/mute", false, false, NULL, NULL, NULL);
FuriRecordSubscriber* handler_d =
furi_open_deprecated("test/mute", false, false, NULL, NULL, NULL);
if(handler_d == NULL) {
printf("cannot open handler D\n");
return false;

View File

@ -0,0 +1,123 @@
#include <stdio.h>
#include <string.h>
#include "flipper_v2.h"
#include "log.h"
#include "minunit.h"
void test_furi_valuemutex() {
const int init_value = 0xdeadbeef;
const int changed_value = 0x12345678;
int value = init_value;
bool result;
ValueMutex valuemutex;
// init mutex case
result = init_mutex(&valuemutex, &value, sizeof(value));
mu_assert(result, "init mutex failed");
// acquire mutex case
int* value_pointer = acquire_mutex(&valuemutex, 100);
mu_assert_pointers_eq(value_pointer, &value);
// second acquire mutex case
int* value_pointer_second = acquire_mutex(&valuemutex, 100);
mu_assert_pointers_eq(value_pointer_second, NULL);
// change value case
*value_pointer = changed_value;
mu_assert_int_eq(value, changed_value);
// release mutex case
result = release_mutex(&valuemutex, &value);
mu_assert(result, "release mutex failed");
// TODO
//acquire mutex blocking case
//write mutex blocking case
//read mutex blocking case
}
/*
TEST: concurrent access
1. Create holding record
2. Open it twice
3. Change value simultaneously in two app and check integrity
*/
// TODO this test broke because mutex in furi is not implemented
typedef struct {
// a and b must be equal
uint8_t a;
uint8_t b;
} ConcurrentValue;
void furi_concurent_app(void* p) {
ValueMutex* mutex = (ValueMutex*)p;
if(mutex == NULL) {
printf("cannot open mutex\n");
furiac_exit(NULL);
}
for(size_t i = 0; i < 10; i++) {
ConcurrentValue* value = (ConcurrentValue*)acquire_mutex_block(mutex);
if(value == NULL) {
printf("cannot take record\n");
release_mutex(mutex, value);
furiac_exit(NULL);
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
delay(2);
value->a = a;
value->b = b;
release_mutex(mutex, value);
}
furiac_exit(NULL);
}
void test_furi_concurrent_access() {
// 1. Create holding record
ConcurrentValue value = {.a = 0, .b = 0};
ValueMutex mutex;
mu_check(init_mutex(&mutex, &value, sizeof(value)));
// 3. Create second app for interact with it
FuriApp* second_app = furiac_start(furi_concurent_app, "furi concurent app", (void*)&mutex);
// 4. multiply ConcurrentValue::a
for(size_t i = 0; i < 4; i++) {
ConcurrentValue* value = (ConcurrentValue*)acquire_mutex_block(&mutex);
if(value == NULL) {
release_mutex(&mutex, value);
mu_fail("cannot take record\n");
}
// emulate read-modify-write broken by context switching
uint8_t a = value->a;
uint8_t b = value->b;
a++;
b++;
value->a = a;
delay(10); // this is only for test, do not add delay between take/give in prod!
value->b = b;
release_mutex(&mutex, value);
}
delay(50);
mu_assert_pointers_eq(second_app->handler, NULL);
mu_assert_int_eq(value.a, value.b);
}

View File

@ -6,12 +6,15 @@
bool test_furi_ac_create_kill();
bool test_furi_ac_switch_exit();
bool test_furi_pipe_record();
bool test_furi_holding_data();
bool test_furi_concurrent_access();
bool test_furi_nonexistent_data();
bool test_furi_mute_algorithm();
// v2 tests
void test_furi_create_open();
void test_furi_valuemutex();
void test_furi_concurrent_access();
static int foo = 0;
void test_setup(void) {
@ -34,27 +37,22 @@ MU_TEST(mu_test_furi_ac_switch_exit) {
mu_assert_int_eq(test_furi_ac_switch_exit(), true);
}
MU_TEST(mu_test_furi_pipe_record) {
mu_assert_int_eq(test_furi_pipe_record(), true);
}
MU_TEST(mu_test_furi_holding_data) {
mu_assert_int_eq(test_furi_holding_data(), true);
}
MU_TEST(mu_test_furi_concurrent_access) {
mu_assert_int_eq(test_furi_concurrent_access(), true);
}
MU_TEST(mu_test_furi_nonexistent_data) {
mu_assert_int_eq(test_furi_nonexistent_data(), true);
}
/*
MU_TEST(mu_test_furi_mute_algorithm) {
mu_assert_int_eq(test_furi_mute_algorithm(test_log), true);
// v2 tests
MU_TEST(mu_test_furi_create_open) {
test_furi_create_open();
}
MU_TEST(mu_test_furi_valuemutex) {
test_furi_valuemutex();
}
MU_TEST(mu_test_furi_concurrent_access) {
test_furi_concurrent_access();
}
*/
MU_TEST_SUITE(test_suite) {
MU_SUITE_CONFIGURE(&test_setup, &test_teardown);
@ -62,11 +60,14 @@ MU_TEST_SUITE(test_suite) {
MU_RUN_TEST(test_check);
MU_RUN_TEST(mu_test_furi_ac_create_kill);
MU_RUN_TEST(mu_test_furi_ac_switch_exit);
MU_RUN_TEST(mu_test_furi_pipe_record);
MU_RUN_TEST(mu_test_furi_holding_data);
MU_RUN_TEST(mu_test_furi_concurrent_access);
MU_RUN_TEST(mu_test_furi_nonexistent_data);
// MU_RUN_TEST(mu_test_furi_mute_algorithm);
// v2 tests
MU_RUN_TEST(mu_test_furi_create_open);
MU_RUN_TEST(mu_test_furi_valuemutex);
MU_RUN_TEST(mu_test_furi_concurrent_access);
}
int run_minunit() {

47
core/api-basic/flapp.h Normal file
View File

@ -0,0 +1,47 @@
#pragma once
#include "flipper.h"
// == Flipper Application control (flapp) ==
typedef FlappHandler uint32_t; // TODO
/*
simply starts application. It call `app` entrypoint with `param` passed as argument
Useful for daemon applications and pop-up.
*/
FlappHandler* flapp_start(void(app*)(void*), char* name, void* param);
/*
swtich to other application.
System **stop current app**, call `app` entrypoint with `param` passed
as argument and save current application entrypoint to `prev` field in
current application registry. Useful for UI or "active" application.
*/
FlappHandler* flapp_switch(void(app*)(void*), char* name, void* param);
/*
Exit application
stop current application (stop thread and clear application's stack),
start application from `prev` entry in current application registry,
cleanup current application registry.
*/
void flapp_exit(void* param);
/*
stop specified `app` without returning to `prev` application.
*/
bool flapp_kill(FlappHandler* app);
/*
If case one app depend on other, notify that app is ready.
*/
void flapp_ready();
/*
Register on-exit callback.
It called before app will be killed.
Not recommended to use in user scenario, only for system purpose
(unregister callbacks, release mutexes, etc.)
*/
bool flapp_on_exit(void(cb*)(void*), void* ctx);

14
core/api-basic/furi.c Normal file
View File

@ -0,0 +1,14 @@
#include "furi.h"
#include "furi-deprecated.h"
bool furi_create(const char* name, void* ptr) {
return furi_create_deprecated(name, ptr, sizeof(size_t));
}
void* furi_open(const char* name) {
FuriRecordSubscriber* record = furi_open_deprecated(name, false, false, NULL, NULL, NULL);
void* res = furi_take(record);
furi_give(record);
return res;
}

26
core/api-basic/furi.h Normal file
View File

@ -0,0 +1,26 @@
#pragma once
#include "flipper.h"
/*
== Flipper universal registry implementation (FURI) ==
## Requirements
* start daemon app
* kill app
* start child thread (kill when parent app was killed)
* switch between UI apps
*/
/*
Create record.
creates new record in registry and store pointer into it
*/
bool furi_create(const char* name, void* ptr);
/*
Open record.
get stored pointer by its name
*/
void* furi_open(const char* name);

View File

@ -0,0 +1,48 @@
#include "pubsub.h"
void init_pubsub(PubSub* pubsub) {
pubsub->count = 0;
for(size_t i = 0; i < NUM_OF_CALLBACKS; i++) {
pubsub->items[i].
}
}
// TODO add mutex to reconfigurate PubSub
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx) {
if(pubsub->count >= NUM_OF_CALLBACKS) return NULL;
pubsub->count++;
PubSubItem* current = pubsub->items[pubsub->count];
current->cb = cb;
currrnt->ctx = ctx;
pubsub->ids[pubsub->count].self = pubsub;
pubsub->ids[pubsub->count].item = current;
flapp_on_exit(unsubscribe_pubsub, &(pubsub->ids[pubsub->count]));
return current;
}
void unsubscribe_pubsub(PubSubId* pubsub_id) {
// TODO: add, and rearrange all items to keep subscribers item continuous
// TODO: keep ids link actual
// TODO: also add mutex on every pubsub changes
// trivial implementation for NUM_OF_CALLBACKS = 1
if(NUM_OF_CALLBACKS != 1) return;
if(pubsub_id != NULL || pubsub_id->self != NULL || pubsub_id->item != NULL) return;
pubsub_id->self->count = 0;
pubsub_id->item = NULL;
}
void notify_pubsub(PubSub* pubsub, void* arg) {
// iterate over subscribers
for(size_t i = 0; i < pubsub->count; i++) {
pubsub->items[i]->cb(arg, pubsub->items[i]->ctx);
}
}

83
core/api-basic/pubsub.h Normal file
View File

@ -0,0 +1,83 @@
#pragma once
#include "flipper.h"
/*
== PubSub ==
PubSub allows users to subscribe on notifies and notify subscribers.
Notifier side can pass `void*` arg to subscriber callback,
and also subscriber can set `void*` context pointer that pass into
callback (you can see callback signature below).
*/
typedef void(PubSubCallback*)(void*, void*);
typedef struct {
PubSubCallback cb;
void* ctx;
} PubSubItem;
typedef struct {
PubSub* self;
PubSubItem* item;
} PubSubId;
typedef struct {
PubSubItem items[NUM_OF_CALLBACKS];
PubSubId ids[NUM_OF_CALLBACKS]; ///< permanent links to item
size_t count; ///< count of callbacks
} PubSub;
/*
To create PubSub you should create PubSub instance and call `init_pubsub`.
*/
void init_pubsub(PubSub* pubsub);
/*
Use `subscribe_pubsub` to register your callback.
*/
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx);
/*
Use `unsubscribe_pubsub` to unregister callback.
*/
void unsubscribe_pubsub(PubSubId* pubsub_id);
/*
Use `notify_pubsub` to notify subscribers.
*/
void notify_pubsub(PubSub* pubsub, void* arg);
/*
```C
// MANIFEST
// name="test"
// stack=128
void example_pubsub_handler(void* arg, void* ctx) {
printf("get %d from %s\n", *(uint32_t*)arg, (const char*)ctx);
}
void pubsub_test() {
const char* app_name = "test app";
PubSub example_pubsub;
init_pubsub(&example_pubsub);
if(!subscribe_pubsub(&example_pubsub, example_pubsub_handler, (void*)app_name)) {
printf("critical error\n");
flapp_exit(NULL);
}
uint32_t counter = 0;
while(1) {
notify_pubsub(&example_pubsub, (void*)&counter);
counter++;
osDelay(100);
}
}
```
*/

View File

@ -0,0 +1,24 @@
#include "value-expanders.h"
bool commit_managed(ValueManager* managed, void* value) {
if(value != managed->mutex->value) return false;
notify_pubsub(&managed->pubsub, value);
if(!osMutexGive(managed->mutex)) return false;
return true;
}
bool write_managed(ValueManager* managed, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(managed->mutex, timeout);
if(value == NULL) return false;
memcpy(value, data, len):
notify_pubsub(&managed->pubsub, value);
if(!release_mutex(managed->mutex, value)) return false;
return true;
}

View File

@ -0,0 +1,56 @@
#pragma once
#include "flipper.h"
/*
== Value composer ==
*/
typedef void(ValueComposerCallback)(void* ctx, void* state);
void COPY_COMPOSE(void* ctx, void* state) {
read_mutex((ValueMutex*)ctx, state, 0);
}
typedef enum {
UiLayerBelowNotify
UiLayerNotify,
UiLayerAboveNotify
} UiLayer;
ValueComposerHandle* add_compose_layer(
ValueComposer* composer, ValueComposerCallback cb, void* ctx, uint32_t layer
);
bool remove_compose_layer(ValueComposerHandle* handle);
void request_compose(ValueComposerHandle* handle);
// See [LED](LED-API) or [Display](Display-API) API for examples.
/*
== ValueManager ==
More complicated concept is ValueManager.
It is like ValueMutex, but user can subscribe to value updates.
First of all you can use value and pubsub part as showing above:
aquire/release mutex, read value, subscribe/unsubscribe pubsub.
There are two specific methods for ValueManager: write_managed, commit_managed
*/
typedef struct {
ValueMutex value;
PubSub pubsub;
} ValueManager;
/*
acquire value, changes it and send notify with current value.
*/
bool write_managed(ValueManager* managed, void* data, size_t len, uint32_t timeout);
/*
commit_managed works as `release_mutex` but send notify with current value.
*/
bool commit_managed(ValueManager* managed, void* value);

View File

@ -0,0 +1,52 @@
#include "valuemutex.h"
#include <string.h>
bool init_mutex(ValueMutex* valuemutex, void* value, size_t size) {
// mutex without name,
// no attributes (unfortunatly robust mutex is not supported by FreeRTOS),
// with dynamic memory allocation
const osMutexAttr_t value_mutext_attr = {
.name = NULL, .attr_bits = 0, .cb_mem = NULL, .cb_size = 0U};
valuemutex->mutex = osMutexNew(&value_mutext_attr);
if(valuemutex->mutex == NULL) return false;
valuemutex->value = value;
valuemutex->size = size;
return true;
}
void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout) {
if(osMutexAcquire(valuemutex->mutex, timeout) == osOK) {
return valuemutex->value;
} else {
return NULL;
}
}
bool release_mutex(ValueMutex* valuemutex, void* value) {
if(value != valuemutex->value) return false;
if(osMutexRelease(valuemutex->mutex) != osOK) return false;
return true;
}
bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(data, value, len > 0 ? len : valuemutex->size);
if(!release_mutex(valuemutex, value)) return false;
return true;
}
bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(value, data, len > 0 ? len : valuemutex->size);
if(!release_mutex(valuemutex, value)) return false;
return true;
}

123
core/api-basic/valuemutex.h Normal file
View File

@ -0,0 +1,123 @@
#pragma once
#include "flipper.h"
/*
== ValueMutex ==
The most simple concept is ValueMutex.
It is wrapper around mutex and value pointer.
You can take and give mutex to work with value and read and write value.
*/
typedef struct {
void* value;
size_t size;
osMutexId_t mutex;
} ValueMutex;
/*
Creates ValueMutex.
*/
bool init_mutex(ValueMutex* valuemutex, void* value, size_t size);
/*
Call for work with data stored in mutex.
Returns pointer to data if success, NULL otherwise.
*/
void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout);
/*
Helper: infinitly wait for mutex
*/
static inline void* acquire_mutex_block(ValueMutex* valuemutex) {
return acquire_mutex(valuemutex, osWaitForever);
}
/*
Release mutex after end of work with data.
Call `release_mutex` and pass ValueData instance and pointer to data.
*/
bool release_mutex(ValueMutex* valuemutex, void* value);
/*
Instead of take-access-give sequence you can use `read_mutex` and `write_mutex` functions.
Both functions return true in case of success, false otherwise.
*/
bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout);
bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout);
inline static bool write_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return write_mutex(valuemutex, data, len, osWaitForever);
}
inline static bool read_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return read_mutex(valuemutex, data, len, osWaitForever);
}
/*
Usage example
```C
// MANIFEST
// name="example-provider-app"
// stack=128
void provider_app(void* _p) {
// create record with mutex
uint32_t example_value = 0;
ValueMutex example_mutex;
// call `init_mutex`.
if(!init_mutex(&example_mutex, (void*)&example_value, sizeof(uint32_t))) {
printf("critical error\n");
flapp_exit(NULL);
}
if(furi_create("provider/example", (void*)&example_mutex)) {
printf("critical error\n");
flapp_exit(NULL);
}
// we are ready to provide record to other apps
flapp_ready();
// get value and increment it
while(1) {
uint32_t* value = acquire_mutex(&example_mutex, OsWaitForever);
if(value != NULL) {
value++;
}
release_mutex(&example_mutex, value);
osDelay(100);
}
}
// MANIFEST
// name="example-consumer-app"
// stack=128
// require="example-provider-app"
void consumer_app(void* _p) {
// this app run after flapp_ready call in all requirements app
// open mutex value
ValueMutex* counter_mutex = furi_open("provider/example");
if(counter_mutex == NULL) {
printf("critical error\n");
flapp_exit(NULL);
}
// continously read value every 1s
uint32_t counter;
while(1) {
if(read_mutex(counter_mutex, &counter, sizeof(counter), OsWaitForever)) {
printf("counter value: %d\n", counter);
}
osDelay(1000);
}
}
```
*/

133
core/api-hal/api-spi.h Normal file
View File

@ -0,0 +1,133 @@
#include "flipper_v2.h"
/*
struct used for handling SPI info.
*/
typedef struct {
SPI_HandleTypeDef* spi;
PubSubCallback cb;
void* ctx;
} SpiHandle;
/*
For transmit/receive data use `spi_xfer` function.
* `tx_data` and `rx_data` size must be equal (and equal `len`)
* `cb` called after spi operation is completed, `(NULL, ctx)` passed to callback.
*/
bool spi_xfer(
SPI_HandleTypeDef* spi,
uint8_t* tx_data, uint8_t* rx_data, size_t len,
PubSubCallback cb, void* ctx);
/*
Blocking verison:
*/
static inline bool spi_xfer_block(SPI_HandleTypeDef* spi, uint8_t* tx_data, uint8_t* rx_data, size_t len) {
semaphoreInfo s;
osSemaphore block = createSemaphoreStatic(s);
if(!spi_xfer(spi, tx_data, rx_data, len, RELEASE_SEMAPHORE, (void*)block)) {
osReleaseSemaphore(block);
return false;
}
osWaitSemaphore(block);
return false;
}
/*
Common implementation of SPI bus: serial interface + CS pin
*/
typedef struct {
GpioPin* cs; ///< CS pin
ValueMutex* spi; ///< <SpiHandle*>
} SpiBus;
/*
For dedicated work with one device there is `SpiDevice` entity.
It contains ValueMutex around SpiBus: after you acquire device
you can acquire spi to work with it (don't forget SPI bus is shared
around many device, release it after every transaction as quick as possible).
*/
typedef struct {
ValueMutex* bus; ///< <SpiBus*>
} SpiDevice;
## SPI IRQ device
/*
Many devices (like CC1101 and NFC) present as SPI bus and IRQ line.
For work with it there is special entity `SpiIrqDevice`.
Use `subscribe_pubsub` for subscribinq to irq events.
*/
typedef struct {
ValueMutex* bus; ///< <SpiBus*>
PubSub* irq;
} SpiIrqDevice;
/*
Special implementation of SPI bus: serial interface + CS, Res, D/I lines.
*/
typedef struct {
GpioPin* cs; ///< CS pin
GpioPin* res; ///< reset pin
GpioPin* di; ///< D/I pin
ValueMutex* spi; ///< <SPI_HandleTypeDef*>
} DisplayBus;
typedef struct {
ValueMutex* bus; ///< <DisplayBus*>
} DisplayDevice;
/*
# SPI devices (F2)
* `/dev/sdcard` - SD card SPI, `SpiDevice`
* `/dev/cc1101_bus` - Sub-GHz radio (CC1101), `SpiIrqDevice`
* `/dev/nfc` - NFC (ST25R3916), `SpiIrqDevice`
* `/dev/display` - `DisplayDevice`
* `/dev/spiext` - External SPI (warning! Lock PA4, PA5, PA6, PA7)
### Application example
```C
// Be careful, this function called from IRQ context
void handle_irq(void* _arg, void* _ctx) {
}
void cc1101_example() {
SpiIrqDevice* cc1101_device = open_input("/dev/cc1101_bus");
if(cc1101_device == NULL) return; // bus not available, critical error
subscribe_pubsub(cc1101_device->irq, handle_irq, NULL);
{
// acquire device as device bus
SpiBus* spi_bus = acquire_mutex(cc1101_device->bus, 0);
if(spi_bus == NULL) {
printf("Device busy\n");
// wait for device
spi_bus = acquire_mutex_block(cc1101_device->bus);
}
// make transaction
uint8_t request[4] = {0xDE, 0xAD, 0xBE, 0xEF};
uint8_t response[4];
{
SPI_HandleTypeDef* spi = acquire_mutex_block(spi_bus->spi);
gpio_write(spi_bus->cs, false);
spi_xfer_block(spi, request, response, 4);
gpio_write(spi_bus->cs, true);
release_mutex(cc1101_device->spi, spi);
}
// release device (device bus)
release_mutex(cc1101_device->bus, spi_bus);
}
}
```
*/

View File

@ -2,7 +2,6 @@
extern "C" {
#include "flipper.h"
#include "furi.h"
#include "log.h"
#include "startup.h"
#include "tty_uart.h"

View File

@ -3,4 +3,5 @@ CORE_DIR = $(PROJECT_ROOT)/core
CFLAGS += -I$(CORE_DIR)
ASM_SOURCES += $(wildcard $(CORE_DIR)/*.s)
C_SOURCES += $(wildcard $(CORE_DIR)/*.c)
C_SOURCES += $(wildcard $(CORE_DIR)/api-basic/*.c)
CPP_SOURCES += $(wildcard $(CORE_DIR)/*.cpp)

View File

@ -7,7 +7,8 @@ extern "C" {
#include "main.h"
#include "flipper_hal.h"
#include "cmsis_os.h"
#include "furi.h"
#include "furi-deprecated.h"
#include "log.h"
#include "input/input.h"

7
core/flipper_v2.h Normal file
View File

@ -0,0 +1,7 @@
#pragma once
#include "api-basic/furi.h"
//#include "api-basic/flapp.h"
#include "cmsis_os2.h"
#include "api-basic/valuemutex.h"
//#include "api-basic/pubsub.h"

View File

@ -1,5 +1,4 @@
#include "furi.h"
#include "cmsis_os.h"
#include "furi-deprecated.h"
#include <string.h>
// TODO: this file contains printf, that not implemented on uC target
@ -28,7 +27,7 @@ static FuriRecord* find_record(const char* name) {
}
// TODO: change open-create to only open
bool furi_create(const char* name, void* value, size_t size) {
bool furi_create_deprecated(const char* name, void* value, size_t size) {
#ifdef FURI_DEBUG
printf("[FURI] creating %s record\n", name);
#endif
@ -73,7 +72,7 @@ bool furi_create(const char* name, void* value, size_t size) {
return true;
}
FuriRecordSubscriber* furi_open(
FuriRecordSubscriber* furi_open_deprecated(
const char* name,
bool solo,
bool no_mute,
@ -94,7 +93,7 @@ FuriRecordSubscriber* furi_open(
#endif
// create record if not exist
if(!furi_create(name, NULL, 0)) {
if(!furi_create_deprecated(name, NULL, 0)) {
return NULL;
}

View File

@ -127,7 +127,7 @@ If NULL, create FURI Pipe (only callbacks management, no data/mutex)
Returns false if registry have not enough memory for creating.
*/
bool furi_create(const char* name, void* value, size_t size);
bool furi_create_deprecated(const char* name, void* value, size_t size);
/*!
Opens existing FURI record by name.
@ -137,7 +137,7 @@ When appication has exited or record has closed, all handlers is unmuted.
It may be useful for concurrently acces to resources like framebuffer or beeper.
\param[in] no_mute if true, another applications cannot mute this handler.
*/
FuriRecordSubscriber* furi_open(
FuriRecordSubscriber* furi_open_deprecated(
const char* name,
bool solo,
bool no_mute,

View File

@ -1,5 +1,4 @@
#include "furi.h"
#include "cmsis_os.h"
#include "flipper.h"
// TODO: this file contains printf, that not implemented on uC target

View File

@ -5,7 +5,7 @@
#include <string.h>
#include "log.h"
#include "furi.h"
#include "flipper.h"
#define PRINT_STR_SIZE 64
@ -21,5 +21,5 @@ void fuprintf(FuriRecordSubscriber* f, const char* format, ...) {
}
FuriRecordSubscriber* get_default_log() {
return furi_open("tty", false, false, NULL, NULL, NULL);
return furi_open_deprecated("tty", false, false, NULL, NULL, NULL);
}

View File

@ -1,6 +1,6 @@
#pragma once
#include "furi.h"
#include "flipper.h"
FuriRecordSubscriber* get_default_log();
void fuprintf(FuriRecordSubscriber* f, const char* format, ...);

View File

@ -1,6 +1,6 @@
#define _GNU_SOURCE
#include <stdio.h>
#include "furi.h"
#include "flipper.h"
#include "main.h"
extern UART_HandleTypeDef DEBUG_UART;
@ -12,7 +12,7 @@ void handle_uart_write(const void* data, size_t size, void* ctx) {
static ssize_t stdout_write(void* _cookie, const char* buf, size_t n) {
FuriRecordSubscriber* log = pvTaskGetThreadLocalStoragePointer(NULL, 0);
if(log == NULL) {
log = furi_open("tty", false, false, NULL, NULL, NULL);
log = furi_open_deprecated("tty", false, false, NULL, NULL, NULL);
if(log == NULL) {
return -1;
}
@ -33,11 +33,11 @@ static ssize_t stdout_write(void* _cookie, const char* buf, size_t n) {
}
bool register_tty_uart() {
if(!furi_create("tty", NULL, 0)) {
if(!furi_create_deprecated("tty", NULL, 0)) {
return false;
}
if(furi_open("tty", false, false, handle_uart_write, NULL, NULL) == NULL) {
if(furi_open_deprecated("tty", false, false, handle_uart_write, NULL, NULL) == NULL) {
return false;
}

View File

@ -68,3 +68,31 @@ void* pvTaskGetThreadLocalStoragePointer(TaskHandle_t xTaskToQuery, BaseType_t x
void vTaskSetThreadLocalStoragePointer(TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue);
QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength, UBaseType_t uxItemSize);
typedef struct {
const char *name; ///< name of the mutex
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osMutexAttr_t;
typedef SemaphoreHandle_t osMutexId_t;
osMutexId_t osMutexNew(const osMutexAttr_t *attr);
/// Status code values returned by CMSIS-RTOS functions.
typedef enum {
osOK = 0, ///< Operation completed successfully.
osError = -1, ///< Unspecified RTOS error: run-time error but no other error message fits.
osErrorTimeout = -2, ///< Operation not completed within the timeout period.
osErrorResource = -3, ///< Resource not available.
osErrorParameter = -4, ///< Parameter error.
osErrorNoMemory = -5, ///< System is out of memory: it was impossible to allocate or reserve memory for the operation.
osErrorISR = -6, ///< Not allowed in ISR context: the function cannot be called from interrupt service routines.
osStatusReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osStatus_t;
osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout);
osStatus_t osMutexRelease (osMutexId_t mutex_id);
#define osWaitForever portMAX_DELAY

View File

@ -0,0 +1 @@
#include "cmsis_os.h"

View File

@ -230,3 +230,26 @@ void vTaskSetThreadLocalStoragePointer(TaskHandle_t xTaskToSet, BaseType_t xInde
pthread_setspecific(tls_keys[xIndex], pvValue);
}
osMutexId_t osMutexNew(const osMutexAttr_t *attr) {
StaticSemaphore_t* pxMutexBuffer = malloc(sizeof(StaticSemaphore_t));
xSemaphoreCreateMutexStatic(pxMutexBuffer);
return (osMutexId_t)pxMutexBuffer;
}
osStatus_t osMutexAcquire(osMutexId_t mutex_id, uint32_t timeout) {
if(xSemaphoreTake((SemaphoreHandle_t)mutex_id, (TickType_t)timeout) == pdTRUE) {
return osOK;
} else {
return osErrorTimeout;
}
}
osStatus_t osMutexRelease (osMutexId_t mutex_id) {
if(xSemaphoreGive((SemaphoreHandle_t)mutex_id) == pdTRUE) {
return osOK;
} else {
return osError;
}
}

View File

@ -2,6 +2,10 @@ LIB_DIR = $(PROJECT_ROOT)/lib
CFLAGS += -I$(LIB_DIR)
# Mlib containers
CFLAGS += -I$(LIB_DIR)/mlib
# U8G2 display library
U8G2_DIR = $(LIB_DIR)/u8g2
CFLAGS += -I$(U8G2_DIR)
C_SOURCES += $(U8G2_DIR)/u8x8_d_st7565.c

1
lib/mlib Submodule

@ -0,0 +1 @@
Subproject commit eb7556f88faf0bbfd6a4ae99a3d53dcbe2064b88

View File

@ -1,13 +1,27 @@
# Basic concepts:
# [Basic concepts](Basic-API)
* ValueMutex
* PubSub, Publisher, Subscriber
* PubSub
* ValueManager
* LayeredReducer
* ValueComposer
# HAL
# [HAL and devices](HAL-API)
We use [Zephyr HAL](https://docs.zephyrproject.org/latest/reference/peripherals/index.html).
* GPIO
* PWM
* ADC
* I2C
* IR RX (unimplemented)
* Comparator RX (touch key and RFID 125 kHz RX) (unimplemented)
# [SPI Devices](SPI-Devices-API.md)
* Sub-GHz chip
* NFC
* SD card
* display
* external SPI
# OS
@ -15,68 +29,20 @@ We use [CMSIS OS v2](https://www.keil.com/pack/doc/CMSIS_Dev/RTOS2/html/group__C
# UI
* **[Input](Input-API)**
* **[Input](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:Input)**
* **[Display](Display-API)**
* **[Display](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:Display)**
* **[LED](LED-API)**
* **[LED](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:LED)**
* **[Backlight](Backlight-API)** (unimplemented)
* **vibro**
# [Power](Power-API)
* **[Sound](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:Sound)**
* batt voltage
* batt charge
* **backlight**
# System
## batt voltage
## batt charge
# CC1101
## SPI
## IRQ
# SD Card
## SPI
# NFC
## SPI
## IRQ
# IR
## TX LED
## RX ADC
# RFID 125 kHz
## Carrier
## Pull
## Comparator RX (shared with touch key)
# Touch key
## Pull
## Comparator RX (shared with RFID 125 kHz)
# External GPIO
# External SPI
# External I2C
# UART
# [UART](Serial-API)
# USB

View File

@ -6,27 +6,7 @@ Flipper Universal Registry Implementation or FURI is important part of Flipper f
# Application registry and control (FURIAC)
### Start and change application wrokflow
**`FuriApp* furiac_start(void(app*)(void*), char* name, void* param)`**
simply starts application. It call `app` entrypoint with `param` passed as argument. Useful for daemon applications and pop-up.
**`FuriApp furiac_switch(void(app*)(void*), char* name, void* param)`**
swtich to other application. FURI **stop current app**, call `app` entrypoint with `param` passed as argument and save current application entrypoint to `prev` field in current application registry. Useful for UI or "active" application.
### Exit application
**`void furiac_exit(void* param)`**
stop current application (stop thread and clear application's stack), start application from `prev` entry in current application registry, cleanup current application registry.
**`bool furiac_kill(FuriApp app)`**
stop specified `app` without returning to `prev` application.
# Data exchange

View File

@ -1,61 +0,0 @@
All display operations based on [u8g2](https://github.com/olikraus/u8g2) library.
API available as struct, contains u8g2 functions, instance and fonts:
```C
typedef struct {
ValueManager* display; /// ValueManager<u8g2_t*>
void (*u8g2_SetFont)(u8g2_t *u8g2, const uint8_t *font);
void (*u8g2_SetDrawColor)(u8g2_t *u8g2, uint8_t color);
void (*u8g2_SetFontMode)(u8g2_t *u8g2, uint8_t is_transparent);
u8g2_uint_t (*u8g2_DrawStr)(u8g2_t *u8g2, u8g2_uint_t x, u8g2_uint_t y, const char *str);
Fonts fonts;
} Display;
typedef struct {
const uint8_t* u8g2_font_6x10_mf;
} Fonts;
```
First of all you can open display API instance by calling `open_display`
```C
/// Get display instance and API
inline Display* open_display(const char* name) {
return (Display*)furi_open(name);
}
```
Default display name is `/dev/display`.
For draw something to display you can get display instance pointer by calling `take_display`, do something and commit your changes by calling `commit_display`:
```C
/// return pointer in case off success, NULL otherwise
inline u8g2_t* take_display(Display* api, uint32_t timeout) {
return (u8g2_t*)take_mutex(api->display->value, timeout);
}
inline void commit_display(Display* api, u8g2_t* display) {
commit_valuemanager(api->display, display);
}
```
## Usage example
```C
void u8g2_example(void* p) {
Display* display_api = open_display("/dev/display");
if(display_api == NULL) return; // display not available, critical error
u8g2_t* display = take_display(display_api);
if(display != NULL) {
display_api->u8g2_SetFont(display, display_api->fonts.u8g2_font_6x10_mf);
display_api->u8g2_SetDrawColor(display, 1);
display_api->u8g2_SetFontMode(display, 1);
display_api->u8g2_DrawStr(display, 2, 12, "hello world!");
}
commit_display(display_api, display);
}
```

View File

@ -1,124 +0,0 @@
LED state describes by struct:
```C
typedef struct {
uint8_t red;
uint8_t green;
uint8_t blue;
} Rgb;
```
LED API provided by struct:
```C
typedef struct {
LayeredReducer* source; /// every app add its layer to set value, LayeredReducer<Rgb*>
Subscriber* updates; /// LED value changes Supscriber<Rgb*>
ValueMutex* state; /// LED state, ValueMutex<Rgb*>
} LedApi;
```
You can get API instance by calling `open_led`:
```C
/// Add new layer to LED:
inline LedApi* open_led(const char* name) {
return (LedApi*)furi_open(name);
}
```
Default system led is `/dev/led`.
Then add new layer to control LED by calling `add_led_layer`:
```C
inline ValueManager* add_led_layer(Rgb* layer, uint8_t priority) {
ValueManager* manager = register_valuemanager((void*)layer);
if(manager == NULL) return NULL;
if(!add_layered_reducer(manager, priority, layer_compose_default)) {
unregister_valuemanager(manager);
return NULL;
}
return manager;
}
```
For change led you can get display instance pointer by calling `take_led`, do something and commit your changes by calling `commit_led`. Or you can call `write_led`:
```C
/// return pointer in case off success, NULL otherwise
inline Rgb* take_led(ValueManager* led, uint32_t timeout) {
return (Rgb*)take_mutex(led->value, timeout);
}
inline void commit_led(ValueManager* led, Rgb* value) {
commit_valuemanager(led, value);
}
/// return true if success, false otherwise
inline bool write_led(ValueManager* led, Rgb* value, uint32_t timeout) {
return write_valuemanager(state, (void*)value, sizeof(Rgb), timeout);
}
```
To read current led state you should use `read_led` function:
```C
/// return true if success, false otherwise
inline bool read_led(ValueManager* led, Rgb* value, uint32_t timeout) {
return read_mutex(led->value, (void*)value, sizeof(Rgb), timeout);
}
```
Also you can subscribe to led state changes:
Use `subscribe_led_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_led_changes(Subscriber* updates, void(*cb)(Rgb*, void*), void* ctx) {
return subscribe_pubsub(events, void(*)(void*, void*)(cb), ctx);
}
```
## Usage example
```C
void handle_led_state(Rgb* rgb, void* _ctx) {
printf("led: #%02X%02X%02X\n", rgb->red, rgb->green, rgb->blue);
}
void led_example(void* p) {
LedApi* led_api = open_display("/dev/led");
if(led_api == NULL) return; // led not available, critical error
// subscribe to led state updates
subscribe_led_changes(led_api->updates, handle_led_state, NULL);
Rgb current_state;
if(read_led(led_api->state, &current_state, OsWaitForever)) {
printf(
"initial led: #%02X%02X%02X\n",
current_state->red,
current_state->green,
current_state->blue
);
}
// add layer to control led
ValueManager* led_manager = add_led_layer(&current_state, UI_LAYER_APP);
// write only blue by getting pointer
Rgb* rgb = take_led(led_manager, OsWaitForever);
if(rgb != NULL) {
rgb->blue = 0;
}
commit_led(led_manager, rgb);
// write RGB value
write_led(led_manager, &(Rgb{.red = 0xFA, green = 0xCE, .blue = 0x8D}), OsWaitForever);
}
```

View File

@ -1,122 +0,0 @@
sound state describes by struct:
```C
typedef struct {
float freq; /// frequency in Hz
float width; /// pulse witdh 0...1
} Tone;
```
sound API provided by struct:
```C
typedef struct {
LayeredReducer* source; /// every app add its layer to set value, LayeredReducer<Tone*>
Subscriber* updates; /// sound value changes Supscriber<Tone*>
ValueMutex* state; /// sound state, ValueMutex<Tone*>
} SoundApi;
```
You can get API instance by calling `open_sound`:
```C
/// Add new layer to sound:
inline SoundApi* open_sound(const char* name) {
return (SoundApi*)furi_open(name);
}
```
Default system sound is `/dev/sound`.
Then add new layer to control sound by calling `add_sound_layer`:
```C
inline ValueManager* add_sound_layer(Tone* layer, uint8_t priority) {
ValueManager* manager = register_valuemanager((void*)layer);
if(manager == NULL) return NULL;
if(!add_layered_reducer(manager, priority, layer_compose_default)) {
unregister_valuemanager(manager);
return NULL;
}
return manager;
}
```
For change sound you can get display instance pointer by calling `take_sound`, do something and commit your changes by calling `commit_sound`. Or you can call `write_sound`:
```C
/// return pointer in case off success, NULL otherwise
inline Tone* take_sound(ValueManager* sound, uint32_t timeout) {
return (Tone*)take_mutex(sound->value, timeout);
}
inline void commit_sound(ValueManager* sound, Tone* value) {
commit_valuemanager(sound, value);
}
/// return true if success, false otherwise
inline bool write_sound(ValueManager* sound, Tone* value, uint32_t timeout) {
return write_valuemanager(state, (void*)value, sizeof(Tone), timeout);
}
```
To read current sound state you should use `read_sound` function:
```C
/// return true if success, false otherwise
inline bool read_sound(ValueManager* sound, Tone* value, uint32_t timeout) {
return read_mutex(sound->value, (void*)value, sizeof(Tone), timeout);
}
```
Also you can subscribe to sound state changes:
Use `subscribe_sound_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_sound_changes(Subscriber* updates, void(*cb)(Tone*, void*), void* ctx) {
return subscribe_pubsub(events, void(*)(void*, void*)(cb), ctx);
}
```
## Usage example
```C
void handle_sound_state(Tone* tone, void* _ctx) {
printf("sound: %d Hz, %d %%\n", (uint16_t)tone->freq, (uint8_t)(tone->witdh * 100));
}
void sound_example(void* p) {
soundApi* sound_api = open_display("/dev/sound");
if(sound_api == NULL) return; // sound not available, critical error
// subscribe to sound state updates
subscribe_sound_changes(sound_api->updates, handle_sound_state, NULL);
Tone current_state;
if(read_sound(sound_api->state, &current_state, OsWaitForever)) {
printf(
"sound: %d Hz, %d %%\n",
(uint16_t)current_state->freq,
(uint8_t)(current_state->witdh * 100)
);
}
// add layer to control sound
ValueManager* sound_manager = add_sound_layer(&current_state, UI_LAYER_APP);
// write only freq by getting pointer
Tone* tone = take_sound(sound_manager, OsWaitForever);
if(tone != NULL) {
tone->freq = 440;
}
commit_sound(sound_manager, tone);
// write tone value
write_sound(sound_manager, &(Tone{.freq = 110., witdh = 0.5}), OsWaitForever);
}
```

View File

@ -0,0 +1,100 @@
Backlight state describes by `uint8_t level;` brightness level.
LED API provided by struct:
```C
typedef struct {
ValueComposer* composer; /// every app add its value to compose, <uint8_t*>
ValueManager* state; /// value state and changes <uint8_t*>
} BacklightApi;
```
You can get API instance by calling `open_backlight`:
```C
/// Add new layer to LED:
inline BacklightApi* open_backlight(const char* name) {
return (BacklightApi*)furi_open(name);
}
```
Default system led is `/dev/backlight`.
To read current backlight state you should use `read_backlight` function:
```C
/// return true if success, false otherwise
inline bool read_backlight(BacklightApi* api, uint8_t* value, uint32_t timeout) {
return read_mutex(api->state->value, (void*)value, sizeof(uint8_t), timeout);
}
```
Also you can subscribe to backlight state changes:
Use `subscribe_backlight_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_backlight_changes(LedApi* led, void(*cb)(uint8_t*, void*), void* ctx) {
return subscribe_pubsub(led->state->pubsub, void(*)(void*, void*)(cb), ctx);
}
```
Userspace helpers
```C
typedef struct {
uint8_t value;
ValueMutex value_mutex;
ValueComposerHandle* composer_handle;
} Backlight;
inline bool init_backlight_composer(Backlight* backlight, BacklightApi* api, uint32_t layer) {
if(!init_mutex(&backlight->value_mutex, (void*)&backlight->value, sizeof(uint8_t))) {
return false;
}
backlight->composer_handle = add_compose_layer(
api->composer, COPY_COMPOSE, &backlight->value_mutex, layer
); // just copy backlight state on update
return backlight->composer_handle != NULL;
}
inline void write_backlight(Backlight* backlight, uint8_t value) {
write_mutex(&backlight->value_mutex, (void*)&value, sizeof(uint8_t), OsWaitForever);
request_compose(backlight->composer_handle);
}
```
## Usage example
```C
void handle_backlight_state(uint8_t* value, void* _ctx) {
printf("backlight: %d %%\n", (*value * 100) / 256);
}
void backlight_example(void* p) {
BacklightApi* backlight_api = open_backlight("/dev/backlight");
if(backlight_api == NULL) return; // backlight not available, critical error
// subscribe to led state updates
subscribe_backlight_changes(backlight_api, handle_backlight_state, NULL);
// get current backlight value
uint8_t backlight_value;
if(read_backlight(backlight_api, &backlight_value, OsWaitForever)) {
printf(
"initial backlight: %d %%\n",
backlight_value * 100 / 256
);
}
// create compose to control led
Backlight backlight;
if(!init_led_composer(&backlight, backlight_api, UiLayerBelowNotify)) return;
// write RGB value
write_backlight(&backlight, 127);
}
```

402
wiki/fw/api/Basic-API.md Normal file
View File

@ -0,0 +1,402 @@
# Flipper universal registry implementation (FURI)
Create record.
```C
// creates new record in registry and store pointer into it
bool furi_create(const char* name, void* ptr);
```
Open record.
```C
// get stored pointer by its name
void* furi_open(const char* name);
```
# Flipper Application control (flapp)
## (in progress. Old verison)
**`FlappHandler* flapp_start(void(app*)(void*), char* name, void* param)`**
simply starts application. It call `app` entrypoint with `param` passed as argument. Useful for daemon applications and pop-up.
**`FlappHandler* flapp_switch(void(app*)(void*), char* name, void* param)`**
swtich to other application. System **stop current app**, call `app` entrypoint with `param` passed as argument and save current application entrypoint to `prev` field in current application registry. Useful for UI or "active" application.
### Exit application
**`void flapp_exit(void* param)`**
stop current application (stop thread and clear application's stack), start application from `prev` entry in current application registry, cleanup current application registry.
**`bool flapp_kill(FlappHandler* app)`**
stop specified `app` without returning to `prev` application.
**`void flapp_ready()`**
If case one app depend on other, notify that app is ready.
## Requirements
* start daemon app
* kill app
* start child thread (kill when parent app was killed)
* switch between UI apps
**`bool flapp_on_exit(void(cb*)(void*), void* ctx);`**
Register on-exit callback. It called before app will be killed. Not recommended to use in user scenario, only for system purpose (unregister callbacks, release mutexes, etc.)
# ValueMutex
The most simple concept is ValueMutex. It is wrapper around mutex and value pointer. You can take and give mutex to work with value and read and write value.
```C
typedef struct {
void* value;
size_t size;
osMutex mutex;
osMutexDescriptor __static // some internals;
} ValueMutex;
```
Create ValueMutex. Create instance of ValueMutex and call `init_mutex`.
```C
bool init_mutex(ValueMutex* valuemutex, void* value, size_t size) {
valuemutex->mutex = osMutexCreateStatic(valuemutex->__static);
if(valuemutex->mutex == NULL) return false;
valuemutex->value = value;
valuemutex->size = size;
return true;
}
```
For work with data stored in mutex you should call `acquire_mutex`. It return pointer to data if success, NULL otherwise.
You must release mutex after end of work with data. Call `release_mutex` and pass ValueData instance and pointer to data.
```C
void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout) {
if(osMutexTake(valuemutex->mutex, timeout) == osOk) {
return valuemutex->value;
} else {
return NULL;
}
}
// infinitly wait for mutex
inline static void* acquire_mutex_block(ValueMutex* valuemutex) {
return acquire_mutex(valuemutex, OsWaitForever);
}
bool release_mutex(ValueMutex* valuemutex, void* value) {
if(value != valuemutex->value) return false;
if(!osMutexGive(valuemutex->mutex)) return false;
return true;
}
```
Instead of take-access-give sequence you can use `read_mutex` and `write_mutex` functions. Both functions return true in case of success, false otherwise.
```C
bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(data, value, len > 0 ? len : valuemutex->size):
if(!release_mutex(valuemutex, value)) return false;
return true;
}
inline static bool read_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return read_mutex(valuemutex, data, len, OsWaitForever);
}
bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(value, data, len > 0 ? len : valuemutex->size):
if(!release_mutex(valuemutex, value)) return false;
return true;
}
inline static bool write_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return write_mutex(valuemutex, data, len, OsWaitForever);
}
```
## Usage example
```C
/*
MANIFEST
name="example-provider-app"
stack=128
*/
void provider_app(void* _p) {
// create record with mutex
uint32_t example_value = 0;
ValueMutex example_mutex;
if(!init_mutex(&example_mutex, (void*)&example_value, sizeof(uint32_t))) {
printf("critical error\n");
flapp_exit(NULL);
}
if(furi_create("provider/example", (void*)&example_mutex)) {
printf("critical error\n");
flapp_exit(NULL);
}
// we are ready to provide record to other apps
flapp_ready();
// get value and increment it
while(1) {
uint32_t* value = acquire_mutex(&example_mutex, OsWaitForever);
if(value != NULL) {
value++;
}
release_mutex(&example_mutex, value);
osDelay(100);
}
}
/*
MANIFEST
name="example-consumer-app"
stack=128
require="example-provider-app"
*/
void consumer_app(void* _p) {
// this app run after flapp_ready call in all requirements app
// open mutex value
ValueMutex* counter_mutex = furi_open("provider/example");
if(counter_mutex == NULL) {
printf("critical error\n");
flapp_exit(NULL);
}
// continously read value every 1s
uint32_t counter;
while(1) {
if(read_mutex(counter_mutex, &counter, sizeof(counter), OsWaitForever)) {
printf("counter value: %d\n", counter);
}
osDelay(1000);
}
}
```
# PubSub
PubSub allows users to subscribe on notifies and notify subscribers. Notifier side can pass `void*` arg to subscriber callback, and also subscriber can set `void*` context pointer that pass into callback (you can see callback signature below).
```C
typedef void(PubSubCallback*)(void*, void*);
typedef struct {
PubSubCallback cb;
void* ctx;
} PubSubItem;
typedef struct {
PubSub* self;
PubSubItem* item;
} PubSubId;
typedef struct {
PubSubItem items[NUM_OF_CALLBACKS];
PubSubId ids[NUM_OF_CALLBACKS]; ///< permanent links to item
size_t count; ///< count of callbacks
} PubSub;
```
To create PubSub you should create PubSub instance and call `init_pubsub`.
```C
void init_pubsub(PubSub* pubsub) {
pubsub->count = 0;
for(size_t i = 0; i < NUM_OF_CALLBACKS; i++) {
pubsub->items[i].
}
}
```
Use `subscribe_pubsub` to register your callback.
```C
// TODO add mutex to reconfigurate PubSub
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx) {
if(pubsub->count >= NUM_OF_CALLBACKS) return NULL;
pubsub->count++;
PubSubItem* current = pubsub->items[pubsub->count];
current->cb = cb;
currrnt->ctx = ctx;
pubsub->ids[pubsub->count].self = pubsub;
pubsub->ids[pubsub->count].item = current;
flapp_on_exit(unsubscribe_pubsub, &(pubsub->ids[pubsub->count]));
return current;
}
```
Use `unsubscribe_pubsub` to unregister callback.
```C
void unsubscribe_pubsub(PubSubId* pubsub_id) {
// TODO: add, and rearrange all items to keep subscribers item continuous
// TODO: keep ids link actual
// TODO: also add mutex on every pubsub changes
// trivial implementation for NUM_OF_CALLBACKS = 1
if(NUM_OF_CALLBACKS != 1) return;
if(pubsub_id != NULL || pubsub_id->self != NULL || pubsub_id->item != NULL) return;
pubsub_id->self->count = 0;
pubsub_id->item = NULL;
}
```
Use `notify_pubsub` to notify subscribers.
```C
void notify_pubsub(PubSub* pubsub, void* arg) {
// iterate over subscribers
for(size_t i = 0; i < pubsub->count; i++) {
pubsub->items[i]->cb(arg, pubsub->items[i]->ctx);
}
}
```
## Usage example
```C
/*
MANIFEST
name="test"
stack=128
*/
void example_pubsub_handler(void* arg, void* ctx) {
printf("get %d from %s\n", *(uint32_t*)arg, (const char*)ctx);
}
void pubsub_test() {
const char* app_name = "test app";
PubSub example_pubsub;
init_pubsub(&example_pubsub);
if(!subscribe_pubsub(&example_pubsub, example_pubsub_handler, (void*)app_name)) {
printf("critical error\n");
flapp_exit(NULL);
}
uint32_t counter = 0;
while(1) {
notify_pubsub(&example_pubsub, (void*)&counter);
counter++;
osDelay(100);
}
}
```
# ValueComposer
```C
typedef void(ValueComposerCallback)(void* ctx, void* state);
void COPY_COMPOSE(void* ctx, void* state) {
read_mutex((ValueMutex*)ctx, state, 0);
}
typedef enum {
UiLayerBelowNotify
UiLayerNotify,
UiLayerAboveNotify
} UiLayer;
```
```C
ValueComposerHandle* add_compose_layer(
ValueComposer* composer, ValueComposerCallback cb, void* ctx, uint32_t layer
);
```
```C
bool remove_compose_layer(ValueComposerHandle* handle);
```
```C
void request_compose(ValueComposerHandle* handle);
```
See [LED](LED-API) or [Display](Display-API) API for examples.
# ValueManager
More complicated concept is ValueManager. It is like ValueMutex, but user can subscribe to value updates.
```C
typedef struct {
ValueMutex value;
PubSub pubsub;
} ValueManager;
```
First of all you can use value and pubsub part as showing above: aquire/release mutex, read value, subscribe/unsubscribe pubsub. There are two specific methods for ValueManager:
`write_managed` acquire value, changes it and send notify with current value.
```C
bool write_managed(ValueManager* managed, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(managed->mutex, timeout);
if(value == NULL) return false;
memcpy(value, data, len):
notify_pubsub(&managed->pubsub, value);
if(!release_mutex(managed->mutex, value)) return false;
return true;
}
```
`commit_managed` works as `release_mutex` but send notify with current value.
```C
bool commit_managed(ValueManager* managed, void* value) {
if(value != managed->mutex->value) return false;
notify_pubsub(&managed->pubsub, value);
if(!osMutexGive(managed->mutex)) return false;
return true;
}
```

View File

@ -0,0 +1,68 @@
All display operations based on [u8g2](https://github.com/olikraus/u8g2) library.
API available as `ValueComposer`.
Driver call render callback and pass API contains u8g2 functions, instance and fonts:
```C
typedef struct {
u8g2_t* display;
void (*u8g2_SetFont)(u8g2_t *u8g2, const uint8_t *font);
void (*u8g2_SetDrawColor)(u8g2_t *u8g2, uint8_t color);
void (*u8g2_SetFontMode)(u8g2_t *u8g2, uint8_t is_transparent);
u8g2_uint_t (*u8g2_DrawStr)(u8g2_t *u8g2, u8g2_uint_t x, u8g2_uint_t y, const char *str);
Fonts fonts;
} DisplayApi;
typedef struct {
const uint8_t* u8g2_font_6x10_mf;
} Fonts;
```
First of all you can open display API instance by calling `open_display`
```C
/// Get display instance and API
inline Display* open_display(const char* name) {
return (Display*)furi_open(name);
}
```
Default display name is `/dev/display`.
For draw something to display you need to register new layer in display composer:
```C
typedef void (RenderCallback*)(void* ctx, DisplayApi* api);
inline ValueComposerHandle* init_display_composer(
Display* api, RenderCallback render, void* ctx, uint32_t layer) {
return add_compose_layer(api->composer, (ValueComposerCallback)render, ctx, layer);
}
```
And then call `request_compose` every time you need to redraw your image.
## Usage example
```C
void example_render(void* ctx, DisplayApi* api) {
api->u8g2_SetFont(api->display, display_api->fonts.u8g2_font_6x10_mf);
api->u8g2_SetDrawColor(api->display, 1);
api->u8g2_SetFontMode(api->display, 1);
api->u8g2_DrawStr(api->display, 2, 12, (char*)ctx); // ctx contains some static text
}
void u8g2_example(void* p) {
Display* display_api = open_display("/dev/display");
if(display_api == NULL) return; // display not available, critical error
ValueComposerHandle display_handler = init_display_composer(
display_api, example_render, (void*)"Hello world", UiLayerBelowNotify);
request_compose(display_handler);
}
```

158
wiki/fw/api/HAL-API.md Normal file
View File

@ -0,0 +1,158 @@
# GPIO
GPIO defined as struct `GpioPin`.
GPIO functions:
```C
// Init GPIO
void gpio_init(GpioPin* gpio, GpioMode mode);
typedef enum { GpioModeInput, GpioModeOutput, GpioModeOpenDrain } GpioMode;
// write value to GPIO
void gpio_write(GpioPin* gpio, bool state);
// read value from GPIO, f = LOW, t = HIGH
bool gpio_read(GpioPin* gpio);
```
When application is exited, system place pin to Z-state by calling `gpio_disable`.
```C
// put GPIO to Z-state (used for restore pin state on app exit)
void gpio_disable(ValueMutex* gpio_mutex) {
GpioPin* gpio = acquire_mutex(gpio_mutex, 0);
gpio_init(gpio, GpioModeInput);
release_mutex(gpio_mutex, gpio);
}
```
Available GPIO stored in FURI as `ValueMutex<GpioPin*>`.
```C
inline static ValueMutex* open_gpio_mutex(const char* name) {
ValueMutex* gpio_mutex = (ValueMutex*)furi_open(name);
if(gpio_mutex != NULL) flapp_on_exit(gpio_disable, gpio_mutex);
return gpio_mutex;
}
// helper
inline static GpioPin* open_gpio(const char* name) {
ValueMutex* gpio_mutex = open_gpio(name);
return (GpioPin*)acquire_mutex(gpio_mutex, 0);
}
```
## Available GPIO (target F2)
* PA4
* PA5
* PA6
* PA7
* PB2
* PC3
* PC0
* PC1
* PB6
* PB7
* PA13
* PA14
* RFID_PULL
* IR_TX
* IBUTTON
* VIBRO
## Usage example
```C
void gpio_example() {
GpioPin* pin = open_gpio("PB6");
if(pin == NULL) {
printf("pin not available\n");
return;
}
gpio_init(pin, GpioModeOutput);
while(1) {
gpio_write(pin, true);
delay(100);
gpio_write(pin, false);
delay(100);
}
}
```
# PWM
PWM defined as `PwmPin`. To set PWM channel:
```C
void pwm_set(PwmPin* pwm, float value, float freq);
```
When application is exited, system disable pwm by calling `pwm_disable`.
```C
// put GPIO to Z-state (used for restore pin state on app exit)
void pwm_disable(ValueMutex* pwm_mutex) {
PwmPin* pwm = acquire_mutex(pwm_mutex, 0);
pwm_set(pwm, 0., 0.);
release_mutex(pwm_mutex, pwm);
}
```
Available PWM stored in FURI as `ValueMutex<PwmPin*>`.
```C
inline static ValueMutex* open_pwm_mutex(const char* name) {
ValueMutex* pwm_mutex = (ValueMutex*)furi_open(name);
if(pwm_mutex != NULL) flapp_on_exit(pwm_disable, pwm_mutex);
return pwm_mutex;
}
// helper
inline static PwmPin* open_pwm(const char* name) {
ValueMutex* pwm_mutex = open_gpio(name);
return (PwmPin*)acquire_mutex(pwm_mutex, 0);
}
```
## Available PWM (target F2)
* SPEAKER
* RFID_OUT
## Usage example
```C
void sound_example() {
PwmPin* speaker = open_pwm("SPEAKER");
if(speaker == NULL) {
printf("speaker not available\n");
return;
}
while(1) {
pwm_set(speaker, 1000., 0.1);
delay(2);
pwm_set(speaker, 110., 0.5);
delay(198);
pwm_set(speaker, 330., 0.5);
delay(200);
}
}
```
# ADC
Coming soon...
# I2C
Coming soon...

View File

@ -13,7 +13,7 @@ You can get API instance by calling `open_input`:
```C
/// Get input struct
inline Input* open_input(const char* name) {
return furi_open(name);
return (Input*)furi_open(name);
}
```
@ -37,8 +37,8 @@ To read buttons state you should use `read_state` function:
```C
/// read current state of all buttons. Return true if success, false otherwise
inline bool read_state(ValueMutex* state, InputState* value, uint32_t timeout) {
return read_mutex(state, (void*)value, sizeof(InputState), timeout);
inline bool read_state(Input* api, InputState* value, uint32_t timeout) {
return read_mutex(api->state, (void*)value, sizeof(InputState), timeout);
}
```
@ -94,7 +94,7 @@ void input_example(void* p) {
// blocking way
InputState state;
while(1) {
if(read_state(input->state, &state, OsWaitForever)) {
if(read_state(input, &state, OsWaitForever)) {
if(state.up) {
printf("up is pressed");
delay(1000);

110
wiki/fw/api/LED-API.md Normal file
View File

@ -0,0 +1,110 @@
LED state describes by struct:
```C
typedef struct {
uint8_t red;
uint8_t green;
uint8_t blue;
} Rgb;
```
LED API provided by struct:
```C
typedef struct {
ValueComposer* composer; /// every app add its value to compose, <Rgb*>
ValueManager* state; /// LED value state and changes <Rgb*>
} LedApi;
```
You can get API instance by calling `open_led`:
```C
/// Add new layer to LED:
inline LedApi* open_led(const char* name) {
return (LedApi*)furi_open(name);
}
```
Default system led is `/dev/led`.
To read current led state you should use `read_led` function:
```C
/// return true if success, false otherwise
inline bool read_led(LedApi* led, Rgb* value, uint32_t timeout) {
return read_mutex(led->state->value, (void*)value, sizeof(Rgb), timeout);
}
```
Also you can subscribe to led state changes:
Use `subscribe_led_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_led_changes(LedApi* led, void(*cb)(Rgb*, void*), void* ctx) {
return subscribe_pubsub(led->state->pubsub, void(*)(void*, void*)(cb), ctx);
}
```
Userspace helpers
```C
typedef struct {
Rgb value;
ValueMutex value_mutex;
ValueComposerHandle* composer_handle;
} SystemLed;
inline bool init_led_composer(SystemLed* led, LedApi* api, uint32_t layer) {
if(!init_mutex(&led->value_mutex, (void*)&led->value, sizeof(Rgb))) {
return false;
}
led->composer_handle = add_compose_layer(
api->composer, COPY_COMPOSE, &led->value_mutex, layer
); // just copy led state on update
return led->composer_handle != NULL;
}
inline void write_led(SystemLed* led, Rgb* value) {
write_mutex(&led->value_mutex, (void*)value, sizeof(Rgb), OsWaitForever);
request_compose(led->composer_handle);
}
```
## Usage example
```C
void handle_led_state(Rgb* rgb, void* _ctx) {
printf("led: #%02X%02X%02X\n", rgb->red, rgb->green, rgb->blue);
}
void led_example(void* p) {
LedApi* led_api = open_led("/dev/led");
if(led_api == NULL) return; // led not available, critical error
// subscribe to led state updates
subscribe_led_changes(led_api, handle_led_state, NULL);
// get current led value
Rgb led_value;
if(read_led(led_api, &led_value, OsWaitForever)) {
printf(
"initial led: #%02X%02X%02X\n",
led_value->red,
led_value->green,
led_value->blue
);
}
// create compose to control led
SystemLed system_led;
if(!init_led_composer(&system_led, led_api, UiLayerBelowNotify)) return;
// write RGB value
write_led(&system_led, &(Rgb{.red = 0xFA, green = 0xCE, .blue = 0x8D}));
}
```

View File

@ -0,0 +1,130 @@
# SPI
HAL struct `SPI_HandleTypeDef*` used for handling SPI info.
For transmit/receive data use `spi_xfer` function:
```C
bool spi_xfer(
SPI_HandleTypeDef* spi,
uint8_t* tx_data, uint8_t* rx_data, size_t len,
PubSubCallback cb, void* ctx);
```
* `tx_data` and `rx_data` size must be equal (and equal `len`)
* `cb` called after spi operation is completed, `(NULL, ctx)` passed to callback.
Blocking verison:
```C
inline static bool spi_xfer_block(SPI_HandleTypeDef* spi, uint8_t* tx_data, uint8_t* rx_data, size_t len) {
semaphoreInfo s;
osSemaphore block = createSemaphoreStatic(s);
if(!spi_xfer(spi, tx_data, rx_data, len, RELEASE_SEMAPHORE, (void*)block)) {
osReleaseSemaphore(block);
return false;
}
osWaitSemaphore(block);
return false;
}
```
## SPI Bus
Common implementation of SPI bus: serial interface + CS pin
```C
typedef struct {
GpioPin* cs; ///< CS pin
ValueMutex* spi; ///< <SPI_HandleTypeDef*>
} SpiBus;
```
## SPI device
For dedicated work with one device there is `SpiDevice` entity. It contains ValueMutex around SpiBus: after you acquire device you can acquire spi to work with it (don't forget SPI bus is shared around many device, release it after every transaction as quick as possible).
```C
typedef struct {
ValueMutex* bus; ///< <SpiBus*>
} SpiDevice;
```
## SPI IRQ device
Many devices (like CC1101 and NFC) present as SPI bus and IRQ line. For work with it there is special entity `SpiIrqDevice`. Use `subscribe_pubsub` for subscribinq to irq events.
```C
typedef struct {
ValueMutex* bus; ///< <SpiBus*>
PubSub* irq;
} SpiIrqDevice;
```
## Display device
Special implementation of SPI bus: serial interface + CS, Res, D/I lines.
```C
typedef struct {
GpioPin* cs; ///< CS pin
GpioPin* res; ///< reset pin
GpioPin* di; ///< D/I pin
ValueMutex* spi; ///< <SPI_HandleTypeDef*>
} DisplayBus;
```C
typedef struct {
ValueMutex* bus; ///< <DisplayBus*>
} DisplayDevice;
```
# SPI devices (F2)
* `/dev/sdcard` - SD card SPI, `SpiDevice`
* `/dev/cc1101_bus` - Sub-GHz radio (CC1101), `SpiIrqDevice`
* `/dev/nfc` - NFC (ST25R3916), `SpiIrqDevice`
* `/dev/display` - `DisplayDevice`
* `/dev/spiext` - External SPI (warning! Lock PA4, PA5, PA6, PA7)
### Application example
```C
// Be careful, this function called from IRQ context
void handle_irq(void* _arg, void* _ctx) {
}
void cc1101_example() {
SpiIrqDevice* cc1101_device = open_input("/dev/cc1101_bus");
if(cc1101_device == NULL) return; // bus not available, critical error
subscribe_pubsub(cc1101_device->irq, handle_irq, NULL);
{
// acquire device as device bus
SpiBus* spi_bus = acquire_mutex(cc1101_device->bus, 0);
if(spi_bus == NULL) {
printf("Device busy\n");
// wait for device
spi_bus = acquire_mutex_block(cc1101_device->bus);
}
// make transaction
uint8_t request[4] = {0xDE, 0xAD, 0xBE, 0xEF};
uint8_t response[4];
{
SPI_HandleTypeDef* spi = acquire_mutex_block(spi_bus->spi);
gpio_write(spi_bus->cs, false);
spi_xfer_block(spi, request, response, 4);
gpio_write(spi_bus->cs, true);
release_mutex(cc1101_device->spi, spi);
}
// release device (device bus)
release_mutex(cc1101_device->bus, spi_bus);
}
}
```