Core api concept (#144)

* add input debounce code from old fw

* exampl of input api

* change input API to get/release

* revert input API to read

* pointer instead of instance

* add input API description

* add display API

* rewrite display names

* migrate to valuemanager

* add LED API

* add closing brakets

* add sound api

* fix led api

* basic api

* rename API pages

* change pubsub implementation

* move FURI AC -> flapp, add valuemutex example, add valuemanager implementation

* pubsub usage example

* user led example

* update example

* simplify input

* add composed display

* add SPI/GPIO and CC1101 bus

* change cc1101 api

* spi api and devices

* spi api and devices

* move SPI to page, add GPIO

* not block pin open

* backlight API and more

* add minunit tests

* fix logging

* ignore unexisting time service on embedded targets

* fix warning, issue with printf

* Deprecate furi_open and furi_close (#167)

Rename existing furi_open and furi_close to deprecated version

* add exitcode

* migrate to printf

* indicate test by leds

* add testing description

* rename furi.h

* wip basic api

* add valuemutex, pubsub, split files

* add value expanders

* value mutex realization and tests

* valuemutex test added to makefile

* do not build unimplemented files

* fix build furmware target f2

* redesigned minunit tests to allow testing in separate files

* test file for valuemutex minunit testing

* minunit partial test valuemutex

* local cmsis_os2 mutex bindings

* implement furi open/create, tests

* migrate concurrent_access to ValueMutex

* add spi header

* Lib: add mlib submodule.

Co-authored-by: rusdacent <rusdacentx0x08@gmail.com>
Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
This commit is contained in:
coreglitch
2020-10-13 14:22:43 +06:00
committed by GitHub
parent b7c30154f4
commit 942bbfaefe
51 changed files with 1874 additions and 692 deletions

View File

@@ -1,13 +1,27 @@
# Basic concepts:
# [Basic concepts](Basic-API)
* ValueMutex
* PubSub, Publisher, Subscriber
* PubSub
* ValueManager
* LayeredReducer
* ValueComposer
# HAL
# [HAL and devices](HAL-API)
We use [Zephyr HAL](https://docs.zephyrproject.org/latest/reference/peripherals/index.html).
* GPIO
* PWM
* ADC
* I2C
* IR RX (unimplemented)
* Comparator RX (touch key and RFID 125 kHz RX) (unimplemented)
# [SPI Devices](SPI-Devices-API.md)
* Sub-GHz chip
* NFC
* SD card
* display
* external SPI
# OS
@@ -15,68 +29,20 @@ We use [CMSIS OS v2](https://www.keil.com/pack/doc/CMSIS_Dev/RTOS2/html/group__C
# UI
* **[Input](Input-API)**
* **[Input](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:Input)**
* **[Display](Display-API)**
* **[Display](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:Display)**
* **[LED](LED-API)**
* **[LED](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:LED)**
* **[Backlight](Backlight-API)** (unimplemented)
* **vibro**
# [Power](Power-API)
* **[Sound](https://github.com/Flipper-Zero/flipperzero-firmware-community/wiki/API:Sound)**
* batt voltage
* batt charge
* **backlight**
# System
## batt voltage
## batt charge
# CC1101
## SPI
## IRQ
# SD Card
## SPI
# NFC
## SPI
## IRQ
# IR
## TX LED
## RX ADC
# RFID 125 kHz
## Carrier
## Pull
## Comparator RX (shared with touch key)
# Touch key
## Pull
## Comparator RX (shared with RFID 125 kHz)
# External GPIO
# External SPI
# External I2C
# UART
# [UART](Serial-API)
# USB

View File

@@ -6,27 +6,7 @@ Flipper Universal Registry Implementation or FURI is important part of Flipper f
# Application registry and control (FURIAC)
### Start and change application wrokflow
**`FuriApp* furiac_start(void(app*)(void*), char* name, void* param)`**
simply starts application. It call `app` entrypoint with `param` passed as argument. Useful for daemon applications and pop-up.
**`FuriApp furiac_switch(void(app*)(void*), char* name, void* param)`**
swtich to other application. FURI **stop current app**, call `app` entrypoint with `param` passed as argument and save current application entrypoint to `prev` field in current application registry. Useful for UI or "active" application.
### Exit application
**`void furiac_exit(void* param)`**
stop current application (stop thread and clear application's stack), start application from `prev` entry in current application registry, cleanup current application registry.
**`bool furiac_kill(FuriApp app)`**
stop specified `app` without returning to `prev` application.
# Data exchange

View File

@@ -1,61 +0,0 @@
All display operations based on [u8g2](https://github.com/olikraus/u8g2) library.
API available as struct, contains u8g2 functions, instance and fonts:
```C
typedef struct {
ValueManager* display; /// ValueManager<u8g2_t*>
void (*u8g2_SetFont)(u8g2_t *u8g2, const uint8_t *font);
void (*u8g2_SetDrawColor)(u8g2_t *u8g2, uint8_t color);
void (*u8g2_SetFontMode)(u8g2_t *u8g2, uint8_t is_transparent);
u8g2_uint_t (*u8g2_DrawStr)(u8g2_t *u8g2, u8g2_uint_t x, u8g2_uint_t y, const char *str);
Fonts fonts;
} Display;
typedef struct {
const uint8_t* u8g2_font_6x10_mf;
} Fonts;
```
First of all you can open display API instance by calling `open_display`
```C
/// Get display instance and API
inline Display* open_display(const char* name) {
return (Display*)furi_open(name);
}
```
Default display name is `/dev/display`.
For draw something to display you can get display instance pointer by calling `take_display`, do something and commit your changes by calling `commit_display`:
```C
/// return pointer in case off success, NULL otherwise
inline u8g2_t* take_display(Display* api, uint32_t timeout) {
return (u8g2_t*)take_mutex(api->display->value, timeout);
}
inline void commit_display(Display* api, u8g2_t* display) {
commit_valuemanager(api->display, display);
}
```
## Usage example
```C
void u8g2_example(void* p) {
Display* display_api = open_display("/dev/display");
if(display_api == NULL) return; // display not available, critical error
u8g2_t* display = take_display(display_api);
if(display != NULL) {
display_api->u8g2_SetFont(display, display_api->fonts.u8g2_font_6x10_mf);
display_api->u8g2_SetDrawColor(display, 1);
display_api->u8g2_SetFontMode(display, 1);
display_api->u8g2_DrawStr(display, 2, 12, "hello world!");
}
commit_display(display_api, display);
}
```

View File

@@ -1,124 +0,0 @@
LED state describes by struct:
```C
typedef struct {
uint8_t red;
uint8_t green;
uint8_t blue;
} Rgb;
```
LED API provided by struct:
```C
typedef struct {
LayeredReducer* source; /// every app add its layer to set value, LayeredReducer<Rgb*>
Subscriber* updates; /// LED value changes Supscriber<Rgb*>
ValueMutex* state; /// LED state, ValueMutex<Rgb*>
} LedApi;
```
You can get API instance by calling `open_led`:
```C
/// Add new layer to LED:
inline LedApi* open_led(const char* name) {
return (LedApi*)furi_open(name);
}
```
Default system led is `/dev/led`.
Then add new layer to control LED by calling `add_led_layer`:
```C
inline ValueManager* add_led_layer(Rgb* layer, uint8_t priority) {
ValueManager* manager = register_valuemanager((void*)layer);
if(manager == NULL) return NULL;
if(!add_layered_reducer(manager, priority, layer_compose_default)) {
unregister_valuemanager(manager);
return NULL;
}
return manager;
}
```
For change led you can get display instance pointer by calling `take_led`, do something and commit your changes by calling `commit_led`. Or you can call `write_led`:
```C
/// return pointer in case off success, NULL otherwise
inline Rgb* take_led(ValueManager* led, uint32_t timeout) {
return (Rgb*)take_mutex(led->value, timeout);
}
inline void commit_led(ValueManager* led, Rgb* value) {
commit_valuemanager(led, value);
}
/// return true if success, false otherwise
inline bool write_led(ValueManager* led, Rgb* value, uint32_t timeout) {
return write_valuemanager(state, (void*)value, sizeof(Rgb), timeout);
}
```
To read current led state you should use `read_led` function:
```C
/// return true if success, false otherwise
inline bool read_led(ValueManager* led, Rgb* value, uint32_t timeout) {
return read_mutex(led->value, (void*)value, sizeof(Rgb), timeout);
}
```
Also you can subscribe to led state changes:
Use `subscribe_led_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_led_changes(Subscriber* updates, void(*cb)(Rgb*, void*), void* ctx) {
return subscribe_pubsub(events, void(*)(void*, void*)(cb), ctx);
}
```
## Usage example
```C
void handle_led_state(Rgb* rgb, void* _ctx) {
printf("led: #%02X%02X%02X\n", rgb->red, rgb->green, rgb->blue);
}
void led_example(void* p) {
LedApi* led_api = open_display("/dev/led");
if(led_api == NULL) return; // led not available, critical error
// subscribe to led state updates
subscribe_led_changes(led_api->updates, handle_led_state, NULL);
Rgb current_state;
if(read_led(led_api->state, &current_state, OsWaitForever)) {
printf(
"initial led: #%02X%02X%02X\n",
current_state->red,
current_state->green,
current_state->blue
);
}
// add layer to control led
ValueManager* led_manager = add_led_layer(&current_state, UI_LAYER_APP);
// write only blue by getting pointer
Rgb* rgb = take_led(led_manager, OsWaitForever);
if(rgb != NULL) {
rgb->blue = 0;
}
commit_led(led_manager, rgb);
// write RGB value
write_led(led_manager, &(Rgb{.red = 0xFA, green = 0xCE, .blue = 0x8D}), OsWaitForever);
}
```

View File

@@ -1,122 +0,0 @@
sound state describes by struct:
```C
typedef struct {
float freq; /// frequency in Hz
float width; /// pulse witdh 0...1
} Tone;
```
sound API provided by struct:
```C
typedef struct {
LayeredReducer* source; /// every app add its layer to set value, LayeredReducer<Tone*>
Subscriber* updates; /// sound value changes Supscriber<Tone*>
ValueMutex* state; /// sound state, ValueMutex<Tone*>
} SoundApi;
```
You can get API instance by calling `open_sound`:
```C
/// Add new layer to sound:
inline SoundApi* open_sound(const char* name) {
return (SoundApi*)furi_open(name);
}
```
Default system sound is `/dev/sound`.
Then add new layer to control sound by calling `add_sound_layer`:
```C
inline ValueManager* add_sound_layer(Tone* layer, uint8_t priority) {
ValueManager* manager = register_valuemanager((void*)layer);
if(manager == NULL) return NULL;
if(!add_layered_reducer(manager, priority, layer_compose_default)) {
unregister_valuemanager(manager);
return NULL;
}
return manager;
}
```
For change sound you can get display instance pointer by calling `take_sound`, do something and commit your changes by calling `commit_sound`. Or you can call `write_sound`:
```C
/// return pointer in case off success, NULL otherwise
inline Tone* take_sound(ValueManager* sound, uint32_t timeout) {
return (Tone*)take_mutex(sound->value, timeout);
}
inline void commit_sound(ValueManager* sound, Tone* value) {
commit_valuemanager(sound, value);
}
/// return true if success, false otherwise
inline bool write_sound(ValueManager* sound, Tone* value, uint32_t timeout) {
return write_valuemanager(state, (void*)value, sizeof(Tone), timeout);
}
```
To read current sound state you should use `read_sound` function:
```C
/// return true if success, false otherwise
inline bool read_sound(ValueManager* sound, Tone* value, uint32_t timeout) {
return read_mutex(sound->value, (void*)value, sizeof(Tone), timeout);
}
```
Also you can subscribe to sound state changes:
Use `subscribe_sound_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_sound_changes(Subscriber* updates, void(*cb)(Tone*, void*), void* ctx) {
return subscribe_pubsub(events, void(*)(void*, void*)(cb), ctx);
}
```
## Usage example
```C
void handle_sound_state(Tone* tone, void* _ctx) {
printf("sound: %d Hz, %d %%\n", (uint16_t)tone->freq, (uint8_t)(tone->witdh * 100));
}
void sound_example(void* p) {
soundApi* sound_api = open_display("/dev/sound");
if(sound_api == NULL) return; // sound not available, critical error
// subscribe to sound state updates
subscribe_sound_changes(sound_api->updates, handle_sound_state, NULL);
Tone current_state;
if(read_sound(sound_api->state, &current_state, OsWaitForever)) {
printf(
"sound: %d Hz, %d %%\n",
(uint16_t)current_state->freq,
(uint8_t)(current_state->witdh * 100)
);
}
// add layer to control sound
ValueManager* sound_manager = add_sound_layer(&current_state, UI_LAYER_APP);
// write only freq by getting pointer
Tone* tone = take_sound(sound_manager, OsWaitForever);
if(tone != NULL) {
tone->freq = 440;
}
commit_sound(sound_manager, tone);
// write tone value
write_sound(sound_manager, &(Tone{.freq = 110., witdh = 0.5}), OsWaitForever);
}
```

View File

@@ -0,0 +1,100 @@
Backlight state describes by `uint8_t level;` brightness level.
LED API provided by struct:
```C
typedef struct {
ValueComposer* composer; /// every app add its value to compose, <uint8_t*>
ValueManager* state; /// value state and changes <uint8_t*>
} BacklightApi;
```
You can get API instance by calling `open_backlight`:
```C
/// Add new layer to LED:
inline BacklightApi* open_backlight(const char* name) {
return (BacklightApi*)furi_open(name);
}
```
Default system led is `/dev/backlight`.
To read current backlight state you should use `read_backlight` function:
```C
/// return true if success, false otherwise
inline bool read_backlight(BacklightApi* api, uint8_t* value, uint32_t timeout) {
return read_mutex(api->state->value, (void*)value, sizeof(uint8_t), timeout);
}
```
Also you can subscribe to backlight state changes:
Use `subscribe_backlight_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_backlight_changes(LedApi* led, void(*cb)(uint8_t*, void*), void* ctx) {
return subscribe_pubsub(led->state->pubsub, void(*)(void*, void*)(cb), ctx);
}
```
Userspace helpers
```C
typedef struct {
uint8_t value;
ValueMutex value_mutex;
ValueComposerHandle* composer_handle;
} Backlight;
inline bool init_backlight_composer(Backlight* backlight, BacklightApi* api, uint32_t layer) {
if(!init_mutex(&backlight->value_mutex, (void*)&backlight->value, sizeof(uint8_t))) {
return false;
}
backlight->composer_handle = add_compose_layer(
api->composer, COPY_COMPOSE, &backlight->value_mutex, layer
); // just copy backlight state on update
return backlight->composer_handle != NULL;
}
inline void write_backlight(Backlight* backlight, uint8_t value) {
write_mutex(&backlight->value_mutex, (void*)&value, sizeof(uint8_t), OsWaitForever);
request_compose(backlight->composer_handle);
}
```
## Usage example
```C
void handle_backlight_state(uint8_t* value, void* _ctx) {
printf("backlight: %d %%\n", (*value * 100) / 256);
}
void backlight_example(void* p) {
BacklightApi* backlight_api = open_backlight("/dev/backlight");
if(backlight_api == NULL) return; // backlight not available, critical error
// subscribe to led state updates
subscribe_backlight_changes(backlight_api, handle_backlight_state, NULL);
// get current backlight value
uint8_t backlight_value;
if(read_backlight(backlight_api, &backlight_value, OsWaitForever)) {
printf(
"initial backlight: %d %%\n",
backlight_value * 100 / 256
);
}
// create compose to control led
Backlight backlight;
if(!init_led_composer(&backlight, backlight_api, UiLayerBelowNotify)) return;
// write RGB value
write_backlight(&backlight, 127);
}
```

402
wiki/fw/api/Basic-API.md Normal file
View File

@@ -0,0 +1,402 @@
# Flipper universal registry implementation (FURI)
Create record.
```C
// creates new record in registry and store pointer into it
bool furi_create(const char* name, void* ptr);
```
Open record.
```C
// get stored pointer by its name
void* furi_open(const char* name);
```
# Flipper Application control (flapp)
## (in progress. Old verison)
**`FlappHandler* flapp_start(void(app*)(void*), char* name, void* param)`**
simply starts application. It call `app` entrypoint with `param` passed as argument. Useful for daemon applications and pop-up.
**`FlappHandler* flapp_switch(void(app*)(void*), char* name, void* param)`**
swtich to other application. System **stop current app**, call `app` entrypoint with `param` passed as argument and save current application entrypoint to `prev` field in current application registry. Useful for UI or "active" application.
### Exit application
**`void flapp_exit(void* param)`**
stop current application (stop thread and clear application's stack), start application from `prev` entry in current application registry, cleanup current application registry.
**`bool flapp_kill(FlappHandler* app)`**
stop specified `app` without returning to `prev` application.
**`void flapp_ready()`**
If case one app depend on other, notify that app is ready.
## Requirements
* start daemon app
* kill app
* start child thread (kill when parent app was killed)
* switch between UI apps
**`bool flapp_on_exit(void(cb*)(void*), void* ctx);`**
Register on-exit callback. It called before app will be killed. Not recommended to use in user scenario, only for system purpose (unregister callbacks, release mutexes, etc.)
# ValueMutex
The most simple concept is ValueMutex. It is wrapper around mutex and value pointer. You can take and give mutex to work with value and read and write value.
```C
typedef struct {
void* value;
size_t size;
osMutex mutex;
osMutexDescriptor __static // some internals;
} ValueMutex;
```
Create ValueMutex. Create instance of ValueMutex and call `init_mutex`.
```C
bool init_mutex(ValueMutex* valuemutex, void* value, size_t size) {
valuemutex->mutex = osMutexCreateStatic(valuemutex->__static);
if(valuemutex->mutex == NULL) return false;
valuemutex->value = value;
valuemutex->size = size;
return true;
}
```
For work with data stored in mutex you should call `acquire_mutex`. It return pointer to data if success, NULL otherwise.
You must release mutex after end of work with data. Call `release_mutex` and pass ValueData instance and pointer to data.
```C
void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout) {
if(osMutexTake(valuemutex->mutex, timeout) == osOk) {
return valuemutex->value;
} else {
return NULL;
}
}
// infinitly wait for mutex
inline static void* acquire_mutex_block(ValueMutex* valuemutex) {
return acquire_mutex(valuemutex, OsWaitForever);
}
bool release_mutex(ValueMutex* valuemutex, void* value) {
if(value != valuemutex->value) return false;
if(!osMutexGive(valuemutex->mutex)) return false;
return true;
}
```
Instead of take-access-give sequence you can use `read_mutex` and `write_mutex` functions. Both functions return true in case of success, false otherwise.
```C
bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(data, value, len > 0 ? len : valuemutex->size):
if(!release_mutex(valuemutex, value)) return false;
return true;
}
inline static bool read_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return read_mutex(valuemutex, data, len, OsWaitForever);
}
bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(value, data, len > 0 ? len : valuemutex->size):
if(!release_mutex(valuemutex, value)) return false;
return true;
}
inline static bool write_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return write_mutex(valuemutex, data, len, OsWaitForever);
}
```
## Usage example
```C
/*
MANIFEST
name="example-provider-app"
stack=128
*/
void provider_app(void* _p) {
// create record with mutex
uint32_t example_value = 0;
ValueMutex example_mutex;
if(!init_mutex(&example_mutex, (void*)&example_value, sizeof(uint32_t))) {
printf("critical error\n");
flapp_exit(NULL);
}
if(furi_create("provider/example", (void*)&example_mutex)) {
printf("critical error\n");
flapp_exit(NULL);
}
// we are ready to provide record to other apps
flapp_ready();
// get value and increment it
while(1) {
uint32_t* value = acquire_mutex(&example_mutex, OsWaitForever);
if(value != NULL) {
value++;
}
release_mutex(&example_mutex, value);
osDelay(100);
}
}
/*
MANIFEST
name="example-consumer-app"
stack=128
require="example-provider-app"
*/
void consumer_app(void* _p) {
// this app run after flapp_ready call in all requirements app
// open mutex value
ValueMutex* counter_mutex = furi_open("provider/example");
if(counter_mutex == NULL) {
printf("critical error\n");
flapp_exit(NULL);
}
// continously read value every 1s
uint32_t counter;
while(1) {
if(read_mutex(counter_mutex, &counter, sizeof(counter), OsWaitForever)) {
printf("counter value: %d\n", counter);
}
osDelay(1000);
}
}
```
# PubSub
PubSub allows users to subscribe on notifies and notify subscribers. Notifier side can pass `void*` arg to subscriber callback, and also subscriber can set `void*` context pointer that pass into callback (you can see callback signature below).
```C
typedef void(PubSubCallback*)(void*, void*);
typedef struct {
PubSubCallback cb;
void* ctx;
} PubSubItem;
typedef struct {
PubSub* self;
PubSubItem* item;
} PubSubId;
typedef struct {
PubSubItem items[NUM_OF_CALLBACKS];
PubSubId ids[NUM_OF_CALLBACKS]; ///< permanent links to item
size_t count; ///< count of callbacks
} PubSub;
```
To create PubSub you should create PubSub instance and call `init_pubsub`.
```C
void init_pubsub(PubSub* pubsub) {
pubsub->count = 0;
for(size_t i = 0; i < NUM_OF_CALLBACKS; i++) {
pubsub->items[i].
}
}
```
Use `subscribe_pubsub` to register your callback.
```C
// TODO add mutex to reconfigurate PubSub
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx) {
if(pubsub->count >= NUM_OF_CALLBACKS) return NULL;
pubsub->count++;
PubSubItem* current = pubsub->items[pubsub->count];
current->cb = cb;
currrnt->ctx = ctx;
pubsub->ids[pubsub->count].self = pubsub;
pubsub->ids[pubsub->count].item = current;
flapp_on_exit(unsubscribe_pubsub, &(pubsub->ids[pubsub->count]));
return current;
}
```
Use `unsubscribe_pubsub` to unregister callback.
```C
void unsubscribe_pubsub(PubSubId* pubsub_id) {
// TODO: add, and rearrange all items to keep subscribers item continuous
// TODO: keep ids link actual
// TODO: also add mutex on every pubsub changes
// trivial implementation for NUM_OF_CALLBACKS = 1
if(NUM_OF_CALLBACKS != 1) return;
if(pubsub_id != NULL || pubsub_id->self != NULL || pubsub_id->item != NULL) return;
pubsub_id->self->count = 0;
pubsub_id->item = NULL;
}
```
Use `notify_pubsub` to notify subscribers.
```C
void notify_pubsub(PubSub* pubsub, void* arg) {
// iterate over subscribers
for(size_t i = 0; i < pubsub->count; i++) {
pubsub->items[i]->cb(arg, pubsub->items[i]->ctx);
}
}
```
## Usage example
```C
/*
MANIFEST
name="test"
stack=128
*/
void example_pubsub_handler(void* arg, void* ctx) {
printf("get %d from %s\n", *(uint32_t*)arg, (const char*)ctx);
}
void pubsub_test() {
const char* app_name = "test app";
PubSub example_pubsub;
init_pubsub(&example_pubsub);
if(!subscribe_pubsub(&example_pubsub, example_pubsub_handler, (void*)app_name)) {
printf("critical error\n");
flapp_exit(NULL);
}
uint32_t counter = 0;
while(1) {
notify_pubsub(&example_pubsub, (void*)&counter);
counter++;
osDelay(100);
}
}
```
# ValueComposer
```C
typedef void(ValueComposerCallback)(void* ctx, void* state);
void COPY_COMPOSE(void* ctx, void* state) {
read_mutex((ValueMutex*)ctx, state, 0);
}
typedef enum {
UiLayerBelowNotify
UiLayerNotify,
UiLayerAboveNotify
} UiLayer;
```
```C
ValueComposerHandle* add_compose_layer(
ValueComposer* composer, ValueComposerCallback cb, void* ctx, uint32_t layer
);
```
```C
bool remove_compose_layer(ValueComposerHandle* handle);
```
```C
void request_compose(ValueComposerHandle* handle);
```
See [LED](LED-API) or [Display](Display-API) API for examples.
# ValueManager
More complicated concept is ValueManager. It is like ValueMutex, but user can subscribe to value updates.
```C
typedef struct {
ValueMutex value;
PubSub pubsub;
} ValueManager;
```
First of all you can use value and pubsub part as showing above: aquire/release mutex, read value, subscribe/unsubscribe pubsub. There are two specific methods for ValueManager:
`write_managed` acquire value, changes it and send notify with current value.
```C
bool write_managed(ValueManager* managed, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(managed->mutex, timeout);
if(value == NULL) return false;
memcpy(value, data, len):
notify_pubsub(&managed->pubsub, value);
if(!release_mutex(managed->mutex, value)) return false;
return true;
}
```
`commit_managed` works as `release_mutex` but send notify with current value.
```C
bool commit_managed(ValueManager* managed, void* value) {
if(value != managed->mutex->value) return false;
notify_pubsub(&managed->pubsub, value);
if(!osMutexGive(managed->mutex)) return false;
return true;
}
```

View File

@@ -0,0 +1,68 @@
All display operations based on [u8g2](https://github.com/olikraus/u8g2) library.
API available as `ValueComposer`.
Driver call render callback and pass API contains u8g2 functions, instance and fonts:
```C
typedef struct {
u8g2_t* display;
void (*u8g2_SetFont)(u8g2_t *u8g2, const uint8_t *font);
void (*u8g2_SetDrawColor)(u8g2_t *u8g2, uint8_t color);
void (*u8g2_SetFontMode)(u8g2_t *u8g2, uint8_t is_transparent);
u8g2_uint_t (*u8g2_DrawStr)(u8g2_t *u8g2, u8g2_uint_t x, u8g2_uint_t y, const char *str);
Fonts fonts;
} DisplayApi;
typedef struct {
const uint8_t* u8g2_font_6x10_mf;
} Fonts;
```
First of all you can open display API instance by calling `open_display`
```C
/// Get display instance and API
inline Display* open_display(const char* name) {
return (Display*)furi_open(name);
}
```
Default display name is `/dev/display`.
For draw something to display you need to register new layer in display composer:
```C
typedef void (RenderCallback*)(void* ctx, DisplayApi* api);
inline ValueComposerHandle* init_display_composer(
Display* api, RenderCallback render, void* ctx, uint32_t layer) {
return add_compose_layer(api->composer, (ValueComposerCallback)render, ctx, layer);
}
```
And then call `request_compose` every time you need to redraw your image.
## Usage example
```C
void example_render(void* ctx, DisplayApi* api) {
api->u8g2_SetFont(api->display, display_api->fonts.u8g2_font_6x10_mf);
api->u8g2_SetDrawColor(api->display, 1);
api->u8g2_SetFontMode(api->display, 1);
api->u8g2_DrawStr(api->display, 2, 12, (char*)ctx); // ctx contains some static text
}
void u8g2_example(void* p) {
Display* display_api = open_display("/dev/display");
if(display_api == NULL) return; // display not available, critical error
ValueComposerHandle display_handler = init_display_composer(
display_api, example_render, (void*)"Hello world", UiLayerBelowNotify);
request_compose(display_handler);
}
```

158
wiki/fw/api/HAL-API.md Normal file
View File

@@ -0,0 +1,158 @@
# GPIO
GPIO defined as struct `GpioPin`.
GPIO functions:
```C
// Init GPIO
void gpio_init(GpioPin* gpio, GpioMode mode);
typedef enum { GpioModeInput, GpioModeOutput, GpioModeOpenDrain } GpioMode;
// write value to GPIO
void gpio_write(GpioPin* gpio, bool state);
// read value from GPIO, f = LOW, t = HIGH
bool gpio_read(GpioPin* gpio);
```
When application is exited, system place pin to Z-state by calling `gpio_disable`.
```C
// put GPIO to Z-state (used for restore pin state on app exit)
void gpio_disable(ValueMutex* gpio_mutex) {
GpioPin* gpio = acquire_mutex(gpio_mutex, 0);
gpio_init(gpio, GpioModeInput);
release_mutex(gpio_mutex, gpio);
}
```
Available GPIO stored in FURI as `ValueMutex<GpioPin*>`.
```C
inline static ValueMutex* open_gpio_mutex(const char* name) {
ValueMutex* gpio_mutex = (ValueMutex*)furi_open(name);
if(gpio_mutex != NULL) flapp_on_exit(gpio_disable, gpio_mutex);
return gpio_mutex;
}
// helper
inline static GpioPin* open_gpio(const char* name) {
ValueMutex* gpio_mutex = open_gpio(name);
return (GpioPin*)acquire_mutex(gpio_mutex, 0);
}
```
## Available GPIO (target F2)
* PA4
* PA5
* PA6
* PA7
* PB2
* PC3
* PC0
* PC1
* PB6
* PB7
* PA13
* PA14
* RFID_PULL
* IR_TX
* IBUTTON
* VIBRO
## Usage example
```C
void gpio_example() {
GpioPin* pin = open_gpio("PB6");
if(pin == NULL) {
printf("pin not available\n");
return;
}
gpio_init(pin, GpioModeOutput);
while(1) {
gpio_write(pin, true);
delay(100);
gpio_write(pin, false);
delay(100);
}
}
```
# PWM
PWM defined as `PwmPin`. To set PWM channel:
```C
void pwm_set(PwmPin* pwm, float value, float freq);
```
When application is exited, system disable pwm by calling `pwm_disable`.
```C
// put GPIO to Z-state (used for restore pin state on app exit)
void pwm_disable(ValueMutex* pwm_mutex) {
PwmPin* pwm = acquire_mutex(pwm_mutex, 0);
pwm_set(pwm, 0., 0.);
release_mutex(pwm_mutex, pwm);
}
```
Available PWM stored in FURI as `ValueMutex<PwmPin*>`.
```C
inline static ValueMutex* open_pwm_mutex(const char* name) {
ValueMutex* pwm_mutex = (ValueMutex*)furi_open(name);
if(pwm_mutex != NULL) flapp_on_exit(pwm_disable, pwm_mutex);
return pwm_mutex;
}
// helper
inline static PwmPin* open_pwm(const char* name) {
ValueMutex* pwm_mutex = open_gpio(name);
return (PwmPin*)acquire_mutex(pwm_mutex, 0);
}
```
## Available PWM (target F2)
* SPEAKER
* RFID_OUT
## Usage example
```C
void sound_example() {
PwmPin* speaker = open_pwm("SPEAKER");
if(speaker == NULL) {
printf("speaker not available\n");
return;
}
while(1) {
pwm_set(speaker, 1000., 0.1);
delay(2);
pwm_set(speaker, 110., 0.5);
delay(198);
pwm_set(speaker, 330., 0.5);
delay(200);
}
}
```
# ADC
Coming soon...
# I2C
Coming soon...

View File

@@ -13,7 +13,7 @@ You can get API instance by calling `open_input`:
```C
/// Get input struct
inline Input* open_input(const char* name) {
return furi_open(name);
return (Input*)furi_open(name);
}
```
@@ -37,8 +37,8 @@ To read buttons state you should use `read_state` function:
```C
/// read current state of all buttons. Return true if success, false otherwise
inline bool read_state(ValueMutex* state, InputState* value, uint32_t timeout) {
return read_mutex(state, (void*)value, sizeof(InputState), timeout);
inline bool read_state(Input* api, InputState* value, uint32_t timeout) {
return read_mutex(api->state, (void*)value, sizeof(InputState), timeout);
}
```
@@ -94,7 +94,7 @@ void input_example(void* p) {
// blocking way
InputState state;
while(1) {
if(read_state(input->state, &state, OsWaitForever)) {
if(read_state(input, &state, OsWaitForever)) {
if(state.up) {
printf("up is pressed");
delay(1000);

110
wiki/fw/api/LED-API.md Normal file
View File

@@ -0,0 +1,110 @@
LED state describes by struct:
```C
typedef struct {
uint8_t red;
uint8_t green;
uint8_t blue;
} Rgb;
```
LED API provided by struct:
```C
typedef struct {
ValueComposer* composer; /// every app add its value to compose, <Rgb*>
ValueManager* state; /// LED value state and changes <Rgb*>
} LedApi;
```
You can get API instance by calling `open_led`:
```C
/// Add new layer to LED:
inline LedApi* open_led(const char* name) {
return (LedApi*)furi_open(name);
}
```
Default system led is `/dev/led`.
To read current led state you should use `read_led` function:
```C
/// return true if success, false otherwise
inline bool read_led(LedApi* led, Rgb* value, uint32_t timeout) {
return read_mutex(led->state->value, (void*)value, sizeof(Rgb), timeout);
}
```
Also you can subscribe to led state changes:
Use `subscribe_led_changes` to register your callback:
```C
/// return true if success, false otherwise
inline bool subscribe_led_changes(LedApi* led, void(*cb)(Rgb*, void*), void* ctx) {
return subscribe_pubsub(led->state->pubsub, void(*)(void*, void*)(cb), ctx);
}
```
Userspace helpers
```C
typedef struct {
Rgb value;
ValueMutex value_mutex;
ValueComposerHandle* composer_handle;
} SystemLed;
inline bool init_led_composer(SystemLed* led, LedApi* api, uint32_t layer) {
if(!init_mutex(&led->value_mutex, (void*)&led->value, sizeof(Rgb))) {
return false;
}
led->composer_handle = add_compose_layer(
api->composer, COPY_COMPOSE, &led->value_mutex, layer
); // just copy led state on update
return led->composer_handle != NULL;
}
inline void write_led(SystemLed* led, Rgb* value) {
write_mutex(&led->value_mutex, (void*)value, sizeof(Rgb), OsWaitForever);
request_compose(led->composer_handle);
}
```
## Usage example
```C
void handle_led_state(Rgb* rgb, void* _ctx) {
printf("led: #%02X%02X%02X\n", rgb->red, rgb->green, rgb->blue);
}
void led_example(void* p) {
LedApi* led_api = open_led("/dev/led");
if(led_api == NULL) return; // led not available, critical error
// subscribe to led state updates
subscribe_led_changes(led_api, handle_led_state, NULL);
// get current led value
Rgb led_value;
if(read_led(led_api, &led_value, OsWaitForever)) {
printf(
"initial led: #%02X%02X%02X\n",
led_value->red,
led_value->green,
led_value->blue
);
}
// create compose to control led
SystemLed system_led;
if(!init_led_composer(&system_led, led_api, UiLayerBelowNotify)) return;
// write RGB value
write_led(&system_led, &(Rgb{.red = 0xFA, green = 0xCE, .blue = 0x8D}));
}
```

View File

@@ -0,0 +1,130 @@
# SPI
HAL struct `SPI_HandleTypeDef*` used for handling SPI info.
For transmit/receive data use `spi_xfer` function:
```C
bool spi_xfer(
SPI_HandleTypeDef* spi,
uint8_t* tx_data, uint8_t* rx_data, size_t len,
PubSubCallback cb, void* ctx);
```
* `tx_data` and `rx_data` size must be equal (and equal `len`)
* `cb` called after spi operation is completed, `(NULL, ctx)` passed to callback.
Blocking verison:
```C
inline static bool spi_xfer_block(SPI_HandleTypeDef* spi, uint8_t* tx_data, uint8_t* rx_data, size_t len) {
semaphoreInfo s;
osSemaphore block = createSemaphoreStatic(s);
if(!spi_xfer(spi, tx_data, rx_data, len, RELEASE_SEMAPHORE, (void*)block)) {
osReleaseSemaphore(block);
return false;
}
osWaitSemaphore(block);
return false;
}
```
## SPI Bus
Common implementation of SPI bus: serial interface + CS pin
```C
typedef struct {
GpioPin* cs; ///< CS pin
ValueMutex* spi; ///< <SPI_HandleTypeDef*>
} SpiBus;
```
## SPI device
For dedicated work with one device there is `SpiDevice` entity. It contains ValueMutex around SpiBus: after you acquire device you can acquire spi to work with it (don't forget SPI bus is shared around many device, release it after every transaction as quick as possible).
```C
typedef struct {
ValueMutex* bus; ///< <SpiBus*>
} SpiDevice;
```
## SPI IRQ device
Many devices (like CC1101 and NFC) present as SPI bus and IRQ line. For work with it there is special entity `SpiIrqDevice`. Use `subscribe_pubsub` for subscribinq to irq events.
```C
typedef struct {
ValueMutex* bus; ///< <SpiBus*>
PubSub* irq;
} SpiIrqDevice;
```
## Display device
Special implementation of SPI bus: serial interface + CS, Res, D/I lines.
```C
typedef struct {
GpioPin* cs; ///< CS pin
GpioPin* res; ///< reset pin
GpioPin* di; ///< D/I pin
ValueMutex* spi; ///< <SPI_HandleTypeDef*>
} DisplayBus;
```C
typedef struct {
ValueMutex* bus; ///< <DisplayBus*>
} DisplayDevice;
```
# SPI devices (F2)
* `/dev/sdcard` - SD card SPI, `SpiDevice`
* `/dev/cc1101_bus` - Sub-GHz radio (CC1101), `SpiIrqDevice`
* `/dev/nfc` - NFC (ST25R3916), `SpiIrqDevice`
* `/dev/display` - `DisplayDevice`
* `/dev/spiext` - External SPI (warning! Lock PA4, PA5, PA6, PA7)
### Application example
```C
// Be careful, this function called from IRQ context
void handle_irq(void* _arg, void* _ctx) {
}
void cc1101_example() {
SpiIrqDevice* cc1101_device = open_input("/dev/cc1101_bus");
if(cc1101_device == NULL) return; // bus not available, critical error
subscribe_pubsub(cc1101_device->irq, handle_irq, NULL);
{
// acquire device as device bus
SpiBus* spi_bus = acquire_mutex(cc1101_device->bus, 0);
if(spi_bus == NULL) {
printf("Device busy\n");
// wait for device
spi_bus = acquire_mutex_block(cc1101_device->bus);
}
// make transaction
uint8_t request[4] = {0xDE, 0xAD, 0xBE, 0xEF};
uint8_t response[4];
{
SPI_HandleTypeDef* spi = acquire_mutex_block(spi_bus->spi);
gpio_write(spi_bus->cs, false);
spi_xfer_block(spi, request, response, 4);
gpio_write(spi_bus->cs, true);
release_mutex(cc1101_device->spi, spi);
}
// release device (device bus)
release_mutex(cc1101_device->bus, spi_bus);
}
}
```