Improve display datas Transmission map

This commit is contained in:
Desmis 2019-10-02 09:06:44 +02:00
parent 9a982e6fc2
commit 43228efea6
2 changed files with 223 additions and 197 deletions

View File

@ -1032,6 +1032,9 @@ void Crop::update(int todo)
LHutili, HHutili, cclocalcurve2, localcutili, localexutili, exlocalcurve2, hltonecurveloc2, shtonecurveloc2, tonecurveloc2, lightCurveloc2, huerefblu, chromarefblu, lumarefblu, huere, chromare, lumare, sobelre,
parent->locallColorMask, parent->locallColorMaskinv, parent->locallExpMask, parent->locallExpMaskinv, parent->locallSHMask, parent->locallSHMaskinv, parent->locallcbMask, parent->locallretiMask, parent->locallsoftMask, parent->localltmMask, parent->locallblMask,
minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax);
if (parent->locallListener) {
parent->locallListener->minmaxChanged(maxCD, minCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax);
}
} else {
parent->ipf.Lab_Local(1, sp, (float**)shbuffer, labnCrop, labnCrop, reservCrop, cropx / skip, cropy / skip, skips(parent->fw, skip), skips(parent->fh, skip), skip, locRETgainCurve, locRETtransCurve, lllocalcurve2,locallutili,
loclhCurve, lochhCurve, locccmasCurve, lcmasutili, locllmasCurve, llmasutili, lochhmasCurve, lhmasutili, locccmasexpCurve, lcmasexputili, locllmasexpCurve, llmasexputili, lochhmasexpCurve, lhmasexputili,

View File

@ -1233,7 +1233,7 @@ void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, float** reducDE, LabI
}
}
if (scale == 1) { //equalize last scale with darkness and lightness
if (scale == 1) { //equalize last scale with darkness and lightness of course acts on TM!
if (dar != 1.f || lig != 1.f) {
@ -1299,265 +1299,288 @@ void ImProcFunctions::MSRLocal(int sp, bool fftw, int lum, float** reducDE, LabI
}
if (scal == 1) {
float kval = 1.f;
if (scal == 1) {//only if user select scal = 1
float kval = 1.f;
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel for
#endif
for (int y = 0; y < H_L; ++y) {
for (int x = 0; x < W_L; ++x) {
float threslow = threslum * 163.f;
for (int y = 0; y < H_L; ++y) {
for (int x = 0; x < W_L; ++x) {
float threslow = threslum * 163.f;
if (src[y][x] < threslow) {
kval = src[y][x] / threslow;
if (src[y][x] < threslow) {
kval = src[y][x] / threslow;
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel for
#endif
for (int y = 0; y < H_L; ++y) {
for (int x = 0; x < W_L; ++x) {
float buf = (src[y][x] - out[y][x]) * value_1;
buf *= (buf > 0.f) ? lig : dar;
luminance[y][x] = LIM(src[y][x] + (1.f + kval) * buf, -32768.f, 32768.f);
for (int y = 0; y < H_L; ++y) {
for (int x = 0; x < W_L; ++x) {
float buf = (src[y][x] - out[y][x]) * value_1;
buf *= (buf > 0.f) ? lig : dar;
luminance[y][x] = LIM(src[y][x] + (1.f + kval) * buf, -32768.f, 32768.f);
}
}
}
double avg = 0.f;
int ng = 0;
double avg = 0.f;
int ng = 0;
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
avg += luminance[i][j];
ng++;
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
avg += luminance[i][j];
ng++;
}
}
}
avg /= ng;
avg /= 32768.f;
avg = LIM01(avg);
float contreal = 0.5f * vart;
DiagonalCurve reti_contrast({
DCT_NURBS,
0, 0,
avg - avg * (0.6 - contreal / 250.0), avg - avg * (0.6 + contreal / 250.0),
avg + (1 - avg) * (0.6 - contreal / 250.0), avg + (1 - avg) * (0.6 + contreal / 250.0),
1, 1
});
avg /= ng;
avg /= 32768.f;
avg = LIM01(avg);
float contreal = 0.5f * vart;
DiagonalCurve reti_contrast({
DCT_NURBS,
0, 0,
avg - avg * (0.6 - contreal / 250.0), avg - avg * (0.6 + contreal / 250.0),
avg + (1 - avg) * (0.6 - contreal / 250.0), avg + (1 - avg) * (0.6 + contreal / 250.0),
1, 1
});
#ifdef _OPENMP
#pragma omp parallel for
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) {
float buf = LIM01(luminance[i][j] / 32768.f);
buf = reti_contrast.getVal(buf);
buf *= 32768.f;
luminance[i][j] = buf;
for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) {
float buf = LIM01(luminance[i][j] / 32768.f);
buf = reti_contrast.getVal(buf);
buf *= 32768.f;
luminance[i][j] = buf;
}
}
delete [] buffer;
delete [] outBuffer;
outBuffer = nullptr;
delete [] srcBuffer;
srcBuffer = nullptr;
float str = strength * (chrome == 0 ? 1.f : 0.8f * (chrT - 0.4f));
const float maxclip = (chrome == 0 ? 32768.f : 50000.f);
if (scal != 1) {
mean = 0.f;
stddv = 0.f;
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
// printf("mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", mean, stddv, delta, maxtr, mintr);
if (locRETtransCcurve && mean != 0.f && stddv != 0.f) { //if curve
float asig = 0.166666f / stddv;
float bsig = 0.5f - asig * mean;
float amax = 0.333333f / (maxtr - mean - stddv);
float bmax = 1.f - amax * maxtr;
float amin = 0.333333f / (mean - stddv - mintr);
float bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float absciss;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) { //for mintr to maxtr evalate absciss in function of original transmission
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
absciss = asig * luminance[i][j] + bsig;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else { /*if(luminance[i][j] <= mean - stddv)*/
absciss = amin * luminance[i][j] + bmin;
}
//TODO : move multiplication by 4.f and subtraction of 1.f inside the curve
luminance[i][j] *= (-1.f + 4.f * locRETtransCcurve[absciss]); //new transmission
}
}
}
mean = 0.f;
stddv = 0.f;
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);//new calculation of mean...
float epsil = 0.1f;
mini = mean - vart * stddv;
if (mini < mintr) {
mini = mintr + epsil;
}
maxi = mean + vart * stddv;
if (maxi > maxtr) {
maxi = maxtr - epsil;
}
delta = maxi - mini;
// printf("maxi=%f mini=%f mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", maxi, mini, mean, stddv, delta, maxtr, mintr);
if (!delta) {
delta = 1.0f;
}
}
delete [] buffer;
delete [] outBuffer;
outBuffer = nullptr;
delete [] srcBuffer;
srcBuffer = nullptr;
float *copylum[H_L] ALIGNED16;
float *copylumBuffer = new float[H_L * W_L];
float str = strength * (chrome == 0 ? 1.f : 0.8f * (chrT - 0.4f));
const float maxclip = (chrome == 0 ? 32768.f : 50000.f);
for (int i = 0; i < H_L; i++) {
copylum[i] = &copylumBuffer[i * W_L];
}
if (scal != 1) {
mean = 0.f;
stddv = 0.f;
float cdfactor = (clipt * 32768.f) / delta;
maxCD = -9999999.f;
minCD = 9999999.f;
//prepare work for curve gain
#ifdef _OPENMP
#pragma omp parallel for
#endif
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
// printf("mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", mean, stddv, delta, maxtr, mintr);
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
luminance[i][j] = luminance[i][j] - mini;
}
}
if (locRETtransCcurve && mean != 0.f && stddv != 0.f) { //if curve
float asig = 0.166666f / stddv;
float bsig = 0.5f - asig * mean;
float amax = 0.333333f / (maxtr - mean - stddv);
float bmax = 1.f - amax * maxtr;
float amin = 0.333333f / (mean - stddv - mintr);
float bmin = -amin * mintr;
mean = 0.f;
stddv = 0.f;
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
// printf("meanun=%f stdun=%f maxtr=%f mintr=%f\n", mean, stddv, maxtr, mintr);
float asig = 0.f, bsig = 0.f, amax = 0.f, bmax = 0.f, amin = 0.f, bmin = 0.f;
const bool hasRetGainCurve = locRETgainCcurve && mean != 0.f && stddv != 0.f;
if (hasRetGainCurve) { //if curve
asig = 0.166666f / stddv;
bsig = 0.5f - asig * mean;
amax = 0.333333f / (maxtr - mean - stddv);
bmax = 1.f - amax * maxtr;
amin = 0.333333f / (mean - stddv - mintr);
bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
cdfactor *= 2.f;
}
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float absciss;
// float absciss;
float cdmax = -999999.f, cdmin = 999999.f;
float gan = 0.5f;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < H_L; i++)
for (int j = 0; j < W_L; j++) { //for mintr to maxtr evalate absciss in function of original transmission
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
absciss = asig * luminance[i][j] + bsig;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else { /*if(luminance[i][j] <= mean - stddv)*/
absciss = amin * luminance[i][j] + bmin;
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
if (hasRetGainCurve) {
float absciss;
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
absciss = asig * luminance[i][j] + bsig;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else {
absciss = amin * luminance[i][j] + bmin;
}
gan = locRETgainCcurve[absciss]; //new gain function transmission
}
//TODO : move multiplication by 4.f and subtraction of 1.f inside the curve
luminance[i][j] *= (-1.f + 4.f * locRETtransCcurve[absciss]); //new transmission
//but we don't update mean stddv for display only...
copylum[i][j] = gan * luminance[i][j];//update datas for display
float cd = gan * cdfactor * luminance[i][j] + offse;
cdmax = cd > cdmax ? cd : cdmax;
cdmin = cd < cdmin ? cd : cdmin;
luminance[i][j] = intp(str * reducDE[i][j], clipretinex(cd, 0.f, maxclip), originalLuminance[i][j]);
}
}
}
float epsil = 0.1f;
mini = mean - vart * stddv;
if (mini < mintr) {
mini = mintr + epsil;
}
maxi = mean + vart * stddv;
if (maxi > maxtr) {
maxi = maxtr - epsil;
}
delta = maxi - mini;
// printf("maxi=%f mini=%f mean=%f std=%f delta=%f maxtr=%f mintr=%f\n", maxi, mini, mean, stddv, delta, maxtr, mintr);
if (!delta) {
delta = 1.0f;
}
float cdfactor = (clipt * 32768.f) / delta;
maxCD = -9999999.f;
minCD = 9999999.f;
//prepare work for curve gain
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < H_L; i++) {
for (int j = 0; j < W_L; j++) {
luminance[i][j] = luminance[i][j] - mini;
}
}
mean = 0.f;
stddv = 0.f;
// I call mean_stddv2 instead of mean_stddv ==> logBetaGain
mean_stddv2(luminance, mean, stddv, W_L, H_L, maxtr, mintr);
float asig = 0.f, bsig = 0.f, amax = 0.f, bmax = 0.f, amin = 0.f, bmin = 0.f;
const bool hasRetGainCurve = locRETgainCcurve && mean != 0.f && stddv != 0.f;
if (hasRetGainCurve) { //if curve
asig = 0.166666f / stddv;
bsig = 0.5f - asig * mean;
amax = 0.333333f / (maxtr - mean - stddv);
bmax = 1.f - amax * maxtr;
amin = 0.333333f / (mean - stddv - mintr);
bmin = -amin * mintr;
asig *= 500.f;
bsig *= 500.f;
amax *= 500.f;
bmax *= 500.f;
amin *= 500.f;
bmin *= 500.f;
cdfactor *= 2.f;
}
#ifdef _OPENMP
#pragma omp parallel
#pragma omp critical
#endif
{
// float absciss;
float cdmax = -999999.f, cdmin = 999999.f;
float gan = 0.5f;
{
maxCD = maxCD > cdmax ? maxCD : cdmax;
minCD = minCD < cdmin ? minCD : cdmin;
}
}
mean = 0.f;
stddv = 0.f;
mean_stddv2(copylum, mean, stddv, W_L, H_L, maxtr, mintr);
delete [] copylumBuffer;
copylumBuffer = nullptr;
// printf("mean=%f std=%f maxtr=%f mintr=%f\n", mean, stddv, maxtr, mintr);
} else {
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
luminance[i][j] = LIM(luminance[i][j], 0.f, maxclip) * str + (1.f - str) * originalLuminance[i][j];
if (hasRetGainCurve) {
float absciss;
if (LIKELY(fabsf(luminance[i][j] - mean) < stddv)) {
absciss = asig * luminance[i][j] + bsig;
} else if (luminance[i][j] >= mean) {
absciss = amax * luminance[i][j] + bmax;
} else {
absciss = amin * luminance[i][j] + bmin;
}
gan = locRETgainCcurve[absciss]; //new gain function transmission
}
float cd = gan * cdfactor * luminance[i][j] + offse;
cdmax = cd > cdmax ? cd : cdmax;
cdmin = cd < cdmin ? cd : cdmin;
luminance[i][j] = intp(str * reducDE[i][j], clipretinex(cd, 0.f, maxclip), originalLuminance[i][j]);
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
maxCD = maxCD > cdmax ? maxCD : cdmax;
minCD = minCD < cdmin ? minCD : cdmin;
}
}
if (lum == 1 && (llretiMask == 3 || llretiMask == 0 || llretiMask == 2 || llretiMask == 4)) { //only mask with luminance on last scale
int before = 1;
maskforretinex(sp, before, luminance, nullptr, W_L, H_L, skip, locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, retiMasktmap, retiMask,
loc, bufreti, bufmask, buforig, buforigmas, multiThread);
}
} else {
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int i = 0; i < H_L; i ++)
for (int j = 0; j < W_L; j++) {
luminance[i][j] = LIM(luminance[i][j], 0.f, maxclip) * str + (1.f - str) * originalLuminance[i][j];
}
//mask does not interfered with datas displayed
Tmean = mean;
Tsigma = stddv;
Tmin = mintr;
Tmax = maxtr;
}
if (lum == 1 && (llretiMask == 3 || llretiMask == 0 || llretiMask == 2 || llretiMask == 4)) { //only mask with luminance on last scale
int before = 1;
maskforretinex(sp, before, luminance, nullptr, W_L, H_L, skip, locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, retiMasktmap, retiMask,
loc, bufreti, bufmask, buforig, buforigmas, multiThread);
}
Tmean = mean;
Tsigma = stddv;
Tmin = mintr;
Tmax = maxtr;
}
}
}