EAHD demosaic: own compilation unit, #4727

This commit is contained in:
heckflosse 2018-08-11 23:30:36 +02:00
parent 5bfc5dd880
commit 46d4810b68
3 changed files with 284 additions and 244 deletions

View File

@ -55,6 +55,7 @@ set(RTENGINESOURCEFILES
dirpyr_equalizer.cc
dual_demosaic_RT.cc
dynamicprofile.cc
eahd_demosaic.cc
expo_before_b.cc
fast_demo.cc
ffmanager.cc

View File

@ -47,11 +47,12 @@ using namespace std;
namespace rtengine
{
extern const Settings* settings;
#undef ABS
#undef DIST
#define ABS(a) ((a)<0?-(a):(a))
#define DIST(a,b) (std::fabs(a-b))
#define CLIREF(x) LIM(x,-200000.0f,200000.0f) // avoid overflow : do not act directly on image[] or pix[]
#define x1125(a) (a + xdivf(a, 3))
#define x0875(a) (a - xdivf(a, 3))
@ -59,248 +60,6 @@ namespace rtengine
#define x00625(a) xdivf(a, 4)
#define x0125(a) xdivf(a, 3)
extern const Settings* settings;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void RawImageSource::eahd_demosaic ()
{
BENCHFUN
if (plistener) {
plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::EAHD)));
plistener->setProgress (0.0);
}
// prepare cache and constants for cielab conversion
//TODO: revisit after conversion to D50 illuminant
lc00 = (0.412453 * imatrices.rgb_cam[0][0] + 0.357580 * imatrices.rgb_cam[0][1] + 0.180423 * imatrices.rgb_cam[0][2]) ;// / 0.950456;
lc01 = (0.412453 * imatrices.rgb_cam[1][0] + 0.357580 * imatrices.rgb_cam[1][1] + 0.180423 * imatrices.rgb_cam[1][2]) ;// / 0.950456;
lc02 = (0.412453 * imatrices.rgb_cam[2][0] + 0.357580 * imatrices.rgb_cam[2][1] + 0.180423 * imatrices.rgb_cam[2][2]) ;// / 0.950456;
lc10 = 0.212671 * imatrices.rgb_cam[0][0] + 0.715160 * imatrices.rgb_cam[0][1] + 0.072169 * imatrices.rgb_cam[0][2];
lc11 = 0.212671 * imatrices.rgb_cam[1][0] + 0.715160 * imatrices.rgb_cam[1][1] + 0.072169 * imatrices.rgb_cam[1][2];
lc12 = 0.212671 * imatrices.rgb_cam[2][0] + 0.715160 * imatrices.rgb_cam[2][1] + 0.072169 * imatrices.rgb_cam[2][2];
lc20 = (0.019334 * imatrices.rgb_cam[0][0] + 0.119193 * imatrices.rgb_cam[0][1] + 0.950227 * imatrices.rgb_cam[0][2]) ;// / 1.088754;
lc21 = (0.019334 * imatrices.rgb_cam[1][0] + 0.119193 * imatrices.rgb_cam[1][1] + 0.950227 * imatrices.rgb_cam[1][2]) ;// / 1.088754;
lc22 = (0.019334 * imatrices.rgb_cam[2][0] + 0.119193 * imatrices.rgb_cam[2][1] + 0.950227 * imatrices.rgb_cam[2][2]) ;// / 1.088754;
int maxindex = 3 * 65536; //2*65536 3 = avoid crash 3/2013 J.Desmis
cache = new float[maxindex];
threshold = 0.008856 * MAXVALD;
for (int i = 0; i < maxindex; i++) {
cache[i] = std::cbrt(double(i) / MAXVALD);
}
// end of cielab preparation
JaggedArray<float>
rh (W, 3), gh (W, 4), bh (W, 3),
rv (W, 3), gv (W, 4), bv (W, 3),
lLh (W, 3), lah (W, 3), lbh (W, 3),
lLv (W, 3), lav (W, 3), lbv (W, 3);
JaggedArray<uint16_t> homh (W, 3), homv (W, 3);
// interpolate first two lines
interpolate_row_g (gh[0], gv[0], 0);
interpolate_row_g (gh[1], gv[1], 1);
interpolate_row_g (gh[2], gv[2], 2);
interpolate_row_rb (rh[0], bh[0], nullptr, gh[0], gh[1], 0);
interpolate_row_rb (rv[0], bv[0], nullptr, gv[0], gv[1], 0);
interpolate_row_rb (rh[1], bh[1], gh[0], gh[1], gh[2], 1);
interpolate_row_rb (rv[1], bv[1], gv[0], gv[1], gv[2], 1);
convert_to_cielab_row (rh[0], gh[0], bh[0], lLh[0], lah[0], lbh[0]);
convert_to_cielab_row (rv[0], gv[0], bv[0], lLv[0], lav[0], lbv[0]);
convert_to_cielab_row (rh[1], gh[1], bh[1], lLh[1], lah[1], lbh[1]);
convert_to_cielab_row (rv[1], gv[1], bv[1], lLv[1], lav[1], lbv[1]);
for (int j = 0; j < W; j++) {
homh[0][j] = 0;
homv[0][j] = 0;
homh[1][j] = 0;
homv[1][j] = 0;
}
float dLmaph[9];
float dLmapv[9];
float dCamaph[9];
float dCamapv[9];
float dCbmaph[9];
float dCbmapv[9];
for (int i = 1; i < H - 1; i++) {
int mod[3] = {(i-1) % 3, i % 3, (i+1) %3};
int ix = i % 3;
int imx = (i - 1) % 3;
int ipx = (i + 1) % 3;
if (i < H - 2) {
interpolate_row_g (gh[(i + 2) % 4], gv[(i + 2) % 4], i + 2);
interpolate_row_rb (rh[(i + 1) % 3], bh[(i + 1) % 3], gh[i % 4], gh[(i + 1) % 4], gh[(i + 2) % 4], i + 1);
interpolate_row_rb (rv[(i + 1) % 3], bv[(i + 1) % 3], gv[i % 4], gv[(i + 1) % 4], gv[(i + 2) % 4], i + 1);
} else {
interpolate_row_rb (rh[(i + 1) % 3], bh[(i + 1) % 3], gh[i % 4], gh[(i + 1) % 4], nullptr, i + 1);
interpolate_row_rb (rv[(i + 1) % 3], bv[(i + 1) % 3], gv[i % 4], gv[(i + 1) % 4], nullptr, i + 1);
}
convert_to_cielab_row (rh[(i + 1) % 3], gh[(i + 1) % 4], bh[(i + 1) % 3], lLh[(i + 1) % 3], lah[(i + 1) % 3], lbh[(i + 1) % 3]);
convert_to_cielab_row (rv[(i + 1) % 3], gv[(i + 1) % 4], bv[(i + 1) % 3], lLv[(i + 1) % 3], lav[(i + 1) % 3], lbv[(i + 1) % 3]);
for (int j = 0; j < W; j++) {
homh[ipx][j] = 0;
homv[ipx][j] = 0;
}
for (int j = 1; j < W - 1; j++) {
int dmi = 0;
for (int x = -1; x <= 0; x++) {
int idx = mod[x + 1];
for (int y = -1; y <= 1; y++) {
// compute distance in a, b, and L
if (dmi < 4) {
int sh = homh[idx][j + y];
int sv = homv[idx][j + y];
if (sh > sv) { // fixate horizontal pixel
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLh[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lah[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbh[idx][j + y]);
} else if (sh < sv) {
dLmaph[dmi] = DIST(lLh[ix][j], lLv[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lav[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbv[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
} else {
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
}
} else {
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
}
dmi++;
}
}
int idx = mod[2];
for (int y = -1; y <= 1; y++) {
// compute distance in a, b, and L
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
dmi++;
}
// compute eL & eC
float eL = min(max(dLmaph[3], dLmaph[5]), max(dLmapv[1], dLmapv[7]));
float eCa = min(max(dCamaph[3], dCamaph[5]), max(dCamapv[1], dCamapv[7]));
float eCb = min(max(dCbmaph[3], dCbmaph[5]), max(dCbmapv[1], dCbmapv[7]));
int wh = 0;
for (int dmi = 0; dmi < 9; dmi++) {
wh += (dLmaph[dmi] <= eL) * (dCamaph[dmi] <= eCa) * (dCbmaph[dmi] <= eCb);
}
homh[imx][j - 1] += wh;
homh[imx][j] += wh;
homh[imx][j + 1] += wh;
homh[ix][j - 1] += wh;
homh[ix][j] += wh;
homh[ix][j + 1] += wh;
homh[ipx][j - 1] += wh;
homh[ipx][j] += wh;
homh[ipx][j + 1] += wh;
int wv = 0;
for (int dmi = 0; dmi < 9; dmi++) {
wv += (dLmapv[dmi] <= eL) * (dCamapv[dmi] <= eCa) * (dCbmapv[dmi] <= eCb);
}
homv[imx][j - 1] += wv;
homv[imx][j] += wv;
homv[imx][j + 1] += wv;
homv[ix][j - 1] += wv;
homv[ix][j] += wv;
homv[ix][j + 1] += wv;
homv[ipx][j - 1] += wv;
homv[ipx][j] += wv;
homv[ipx][j + 1] += wv;
}
// finalize image
for (int j = 0; j < W; j++) {
if (ri->ISGREEN(i - 1, j)) {
green[i - 1][j] = rawData[i - 1][j];
} else {
int hc = homh[imx][j];
int vc = homv[imx][j];
if (hc > vc) {
green[i - 1][j] = gh[(i - 1) % 4][j];
} else if (hc < vc) {
green[i - 1][j] = gv[(i - 1) % 4][j];
} else {
green[i - 1][j] = (gh[(i - 1) % 4][j] + gv[(i - 1) % 4][j]) / 2;
}
}
}
if (!(i % 20) && plistener) {
plistener->setProgress ((double)i / (H - 2));
}
}
// finish H-2th and H-1th row, homogenity value is still valailable
for (int i = H - 1; i < H + 1; i++)
for (int j = 0; j < W; j++) {
int hc = homh[(i - 1) % 3][j];
int vc = homv[(i - 1) % 3][j];
if (hc > vc) {
green[i - 1][j] = gh[(i - 1) % 4][j];
} else if (hc < vc) {
green[i - 1][j] = gv[(i - 1) % 4][j];
} else {
green[i - 1][j] = (gh[(i - 1) % 4][j] + gv[(i - 1) % 4][j]) / 2;
}
}
// Interpolate R and B
#pragma omp parallel for
for (int i = 0; i < H; i++) {
if (i == 0) {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], nullptr, green[i], green[i + 1], i, 1.0, 1.0, 1.0, 0, W, 1);
} else if (i == H - 1) {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], green[i - 1], green[i], nullptr, i, 1.0, 1.0, 1.0, 0, W, 1);
} else {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], green[i - 1], green[i], green[i + 1], i, 1.0, 1.0, 1.0, 0, W, 1);
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void RawImageSource::hphd_vertical (float** hpmap, int col_from, int col_to)
{
float* temp = new float[max(W, H)];

280
rtengine/eahd_demosaic.cc Normal file
View File

@ -0,0 +1,280 @@
/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2018 Gabor Horvath <hgabor@rawtherapee.com> and other RawTherapee contributors
* Split out to own compilation unit and made speedup 2018 Ingo Weyrich (heckflosse67@gmx.de)
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cmath>
#include "rawimagesource.h"
#include "rawimagesource_i.h"
#include "jaggedarray.h"
#include "rawimage.h"
#include "iccmatrices.h"
#include "rt_math.h"
#include "../rtgui/multilangmgr.h"
#include "procparams.h"
#define BENCHMARK
#include "StopWatch.h"
using namespace std;
namespace rtengine
{
#define DIST(a,b) (std::fabs(a-b))
extern const Settings* settings;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void RawImageSource::eahd_demosaic ()
{
BENCHFUN
if (plistener) {
plistener->setProgressStr (Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::EAHD)));
plistener->setProgress (0.0);
}
// prepare cache and constants for cielab conversion
//TODO: revisit after conversion to D50 illuminant
lc00 = (0.412453 * imatrices.rgb_cam[0][0] + 0.357580 * imatrices.rgb_cam[0][1] + 0.180423 * imatrices.rgb_cam[0][2]) ;// / 0.950456;
lc01 = (0.412453 * imatrices.rgb_cam[1][0] + 0.357580 * imatrices.rgb_cam[1][1] + 0.180423 * imatrices.rgb_cam[1][2]) ;// / 0.950456;
lc02 = (0.412453 * imatrices.rgb_cam[2][0] + 0.357580 * imatrices.rgb_cam[2][1] + 0.180423 * imatrices.rgb_cam[2][2]) ;// / 0.950456;
lc10 = 0.212671 * imatrices.rgb_cam[0][0] + 0.715160 * imatrices.rgb_cam[0][1] + 0.072169 * imatrices.rgb_cam[0][2];
lc11 = 0.212671 * imatrices.rgb_cam[1][0] + 0.715160 * imatrices.rgb_cam[1][1] + 0.072169 * imatrices.rgb_cam[1][2];
lc12 = 0.212671 * imatrices.rgb_cam[2][0] + 0.715160 * imatrices.rgb_cam[2][1] + 0.072169 * imatrices.rgb_cam[2][2];
lc20 = (0.019334 * imatrices.rgb_cam[0][0] + 0.119193 * imatrices.rgb_cam[0][1] + 0.950227 * imatrices.rgb_cam[0][2]) ;// / 1.088754;
lc21 = (0.019334 * imatrices.rgb_cam[1][0] + 0.119193 * imatrices.rgb_cam[1][1] + 0.950227 * imatrices.rgb_cam[1][2]) ;// / 1.088754;
lc22 = (0.019334 * imatrices.rgb_cam[2][0] + 0.119193 * imatrices.rgb_cam[2][1] + 0.950227 * imatrices.rgb_cam[2][2]) ;// / 1.088754;
int maxindex = 3 * 65536; //2*65536 3 = avoid crash 3/2013 J.Desmis
cache = new float[maxindex];
threshold = 0.008856 * MAXVALD;
for (int i = 0; i < maxindex; i++) {
cache[i] = std::cbrt(double(i) / MAXVALD);
}
// end of cielab preparation
JaggedArray<float>
rh (W, 3), gh (W, 4), bh (W, 3),
rv (W, 3), gv (W, 4), bv (W, 3),
lLh (W, 3), lah (W, 3), lbh (W, 3),
lLv (W, 3), lav (W, 3), lbv (W, 3);
JaggedArray<uint16_t> homh (W, 3), homv (W, 3);
// interpolate first two lines
interpolate_row_g (gh[0], gv[0], 0);
interpolate_row_g (gh[1], gv[1], 1);
interpolate_row_g (gh[2], gv[2], 2);
interpolate_row_rb (rh[0], bh[0], nullptr, gh[0], gh[1], 0);
interpolate_row_rb (rv[0], bv[0], nullptr, gv[0], gv[1], 0);
interpolate_row_rb (rh[1], bh[1], gh[0], gh[1], gh[2], 1);
interpolate_row_rb (rv[1], bv[1], gv[0], gv[1], gv[2], 1);
convert_to_cielab_row (rh[0], gh[0], bh[0], lLh[0], lah[0], lbh[0]);
convert_to_cielab_row (rv[0], gv[0], bv[0], lLv[0], lav[0], lbv[0]);
convert_to_cielab_row (rh[1], gh[1], bh[1], lLh[1], lah[1], lbh[1]);
convert_to_cielab_row (rv[1], gv[1], bv[1], lLv[1], lav[1], lbv[1]);
for (int j = 0; j < W; j++) {
homh[0][j] = 0;
homv[0][j] = 0;
homh[1][j] = 0;
homv[1][j] = 0;
}
float dLmaph[9];
float dLmapv[9];
float dCamaph[9];
float dCamapv[9];
float dCbmaph[9];
float dCbmapv[9];
for (int i = 1; i < H - 1; i++) {
int mod[3] = {(i-1) % 3, i % 3, (i+1) %3};
int ix = i % 3;
int imx = (i - 1) % 3;
int ipx = (i + 1) % 3;
if (i < H - 2) {
interpolate_row_g (gh[(i + 2) % 4], gv[(i + 2) % 4], i + 2);
interpolate_row_rb (rh[(i + 1) % 3], bh[(i + 1) % 3], gh[i % 4], gh[(i + 1) % 4], gh[(i + 2) % 4], i + 1);
interpolate_row_rb (rv[(i + 1) % 3], bv[(i + 1) % 3], gv[i % 4], gv[(i + 1) % 4], gv[(i + 2) % 4], i + 1);
} else {
interpolate_row_rb (rh[(i + 1) % 3], bh[(i + 1) % 3], gh[i % 4], gh[(i + 1) % 4], nullptr, i + 1);
interpolate_row_rb (rv[(i + 1) % 3], bv[(i + 1) % 3], gv[i % 4], gv[(i + 1) % 4], nullptr, i + 1);
}
convert_to_cielab_row (rh[(i + 1) % 3], gh[(i + 1) % 4], bh[(i + 1) % 3], lLh[(i + 1) % 3], lah[(i + 1) % 3], lbh[(i + 1) % 3]);
convert_to_cielab_row (rv[(i + 1) % 3], gv[(i + 1) % 4], bv[(i + 1) % 3], lLv[(i + 1) % 3], lav[(i + 1) % 3], lbv[(i + 1) % 3]);
for (int j = 0; j < W; j++) {
homh[ipx][j] = 0;
homv[ipx][j] = 0;
}
for (int j = 1; j < W - 1; j++) {
int dmi = 0;
for (int x = -1; x <= 0; x++) {
int idx = mod[x + 1];
for (int y = -1; y <= 1; y++) {
// compute distance in a, b, and L
if (dmi < 4) {
int sh = homh[idx][j + y];
int sv = homv[idx][j + y];
if (sh > sv) { // fixate horizontal pixel
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLh[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lah[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbh[idx][j + y]);
} else if (sh < sv) {
dLmaph[dmi] = DIST(lLh[ix][j], lLv[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lav[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbv[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
} else {
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
}
} else {
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
}
dmi++;
}
}
int idx = mod[2];
for (int y = -1; y <= 1; y++) {
// compute distance in a, b, and L
dLmaph[dmi] = DIST(lLh[ix][j], lLh[idx][j + y]);
dCamaph[dmi] = DIST(lah[ix][j], lah[idx][j + y]);
dCbmaph[dmi] = DIST(lbh[ix][j], lbh[idx][j + y]);
dLmapv[dmi] = DIST(lLv[ix][j], lLv[idx][j + y]);
dCamapv[dmi] = DIST(lav[ix][j], lav[idx][j + y]);
dCbmapv[dmi] = DIST(lbv[ix][j], lbv[idx][j + y]);
dmi++;
}
// compute eL & eC
float eL = min(max(dLmaph[3], dLmaph[5]), max(dLmapv[1], dLmapv[7]));
float eCa = min(max(dCamaph[3], dCamaph[5]), max(dCamapv[1], dCamapv[7]));
float eCb = min(max(dCbmaph[3], dCbmaph[5]), max(dCbmapv[1], dCbmapv[7]));
int wh = 0;
for (int dmi = 0; dmi < 9; dmi++) {
wh += (dLmaph[dmi] <= eL) * (dCamaph[dmi] <= eCa) * (dCbmaph[dmi] <= eCb);
}
homh[imx][j - 1] += wh;
homh[imx][j] += wh;
homh[imx][j + 1] += wh;
homh[ix][j - 1] += wh;
homh[ix][j] += wh;
homh[ix][j + 1] += wh;
homh[ipx][j - 1] += wh;
homh[ipx][j] += wh;
homh[ipx][j + 1] += wh;
int wv = 0;
for (int dmi = 0; dmi < 9; dmi++) {
wv += (dLmapv[dmi] <= eL) * (dCamapv[dmi] <= eCa) * (dCbmapv[dmi] <= eCb);
}
homv[imx][j - 1] += wv;
homv[imx][j] += wv;
homv[imx][j + 1] += wv;
homv[ix][j - 1] += wv;
homv[ix][j] += wv;
homv[ix][j + 1] += wv;
homv[ipx][j - 1] += wv;
homv[ipx][j] += wv;
homv[ipx][j + 1] += wv;
}
// finalize image
for (int j = 0; j < W; j++) {
if (ri->ISGREEN(i - 1, j)) {
green[i - 1][j] = rawData[i - 1][j];
} else {
int hc = homh[imx][j];
int vc = homv[imx][j];
if (hc > vc) {
green[i - 1][j] = gh[(i - 1) % 4][j];
} else if (hc < vc) {
green[i - 1][j] = gv[(i - 1) % 4][j];
} else {
green[i - 1][j] = (gh[(i - 1) % 4][j] + gv[(i - 1) % 4][j]) / 2;
}
}
}
if (!(i % 20) && plistener) {
plistener->setProgress ((double)i / (H - 2));
}
}
// finish H-2th and H-1th row, homogenity value is still valailable
for (int i = H - 1; i < H + 1; i++)
for (int j = 0; j < W; j++) {
int hc = homh[(i - 1) % 3][j];
int vc = homv[(i - 1) % 3][j];
if (hc > vc) {
green[i - 1][j] = gh[(i - 1) % 4][j];
} else if (hc < vc) {
green[i - 1][j] = gv[(i - 1) % 4][j];
} else {
green[i - 1][j] = (gh[(i - 1) % 4][j] + gv[(i - 1) % 4][j]) / 2;
}
}
// Interpolate R and B
#pragma omp parallel for
for (int i = 0; i < H; i++) {
if (i == 0) {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], nullptr, green[i], green[i + 1], i, 1.0, 1.0, 1.0, 0, W, 1);
} else if (i == H - 1) {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], green[i - 1], green[i], nullptr, i, 1.0, 1.0, 1.0, 0, W, 1);
} else {
interpolate_row_rb_mul_pp (rawData, red[i], blue[i], green[i - 1], green[i], green[i + 1], i, 1.0, 1.0, 1.0, 0, W, 1);
}
}
}
}