Removed obsoleted resize algos Downscale Faster/Better. Applied Lanczos instead. Ported all resize algos to float instead of double. Removed corresponding strings from default language file.
This commit is contained in:
parent
b51e929d4a
commit
9531a37b3a
@ -916,8 +916,6 @@ TP_RAW_FALSECOLOR;False colour suppression steps
|
||||
!TP_RESIZE_BICUBICSH;Bicubic (Sharper)
|
||||
!TP_RESIZE_BILINEAR;Bilinear
|
||||
!TP_RESIZE_CROPPEDAREA;Cropped area
|
||||
!TP_RESIZE_DOWNSCALEB;Downscale (Better)
|
||||
!TP_RESIZE_DOWNSCALEF;Downscale (Faster)
|
||||
!TP_RESIZE_FITBOX;Bounding box
|
||||
!TP_RESIZE_FULLIMAGE;Full image
|
||||
!TP_RESIZE_FULLSIZE;Full Image Size:
|
||||
|
@ -921,8 +921,6 @@ HISTOGRAM_TOOLTIP_BAR;Show/Hide RBG indicator bar\nClick right mouse button on i
|
||||
!TP_RESIZE_BICUBICSH;Bicubic (Sharper)
|
||||
!TP_RESIZE_BILINEAR;Bilinear
|
||||
!TP_RESIZE_CROPPEDAREA;Cropped area
|
||||
!TP_RESIZE_DOWNSCALEB;Downscale (Better)
|
||||
!TP_RESIZE_DOWNSCALEF;Downscale (Faster)
|
||||
!TP_RESIZE_FITBOX;Bounding box
|
||||
!TP_RESIZE_FULLIMAGE;Full image
|
||||
!TP_RESIZE_FULLSIZE;Full Image Size:
|
||||
|
@ -932,8 +932,6 @@ TP_RESIZE_BICUBICSF;Bicubic (Softer)
|
||||
TP_RESIZE_BICUBICSH;Bicubic (Sharper)
|
||||
TP_RESIZE_BILINEAR;Bilinear
|
||||
TP_RESIZE_CROPPEDAREA;Cropped area
|
||||
TP_RESIZE_DOWNSCALEB;Downscale (Better)
|
||||
TP_RESIZE_DOWNSCALEF;Downscale (Faster)
|
||||
TP_RESIZE_FITBOX;Bounding box
|
||||
TP_RESIZE_FULLIMAGE;Full image
|
||||
TP_RESIZE_FULLSIZE;Full Image Size:
|
||||
|
@ -121,7 +121,7 @@ class ImProcFunctions {
|
||||
void sharpening (LabImage* lab, float** buffer);
|
||||
void transform (Imagefloat* original, Imagefloat* transformed, int cx, int cy, int sx, int sy, int oW, int oH);
|
||||
void lab2rgb (LabImage* lab, Image8* image);
|
||||
void resize (Image16* src, Image16* dst, double dScale);
|
||||
void resize (Image16* src, Image16* dst, float dScale);
|
||||
void deconvsharpening (LabImage* lab, float** buffer);
|
||||
void MLsharpen (LabImage* lab);// Manuel's clarity / sharpening
|
||||
void MLmicrocontrast(LabImage* lab ); //Manuel's microcontrast
|
||||
|
@ -16,14 +16,18 @@
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include <rtengine.h>
|
||||
#include <improcfun.h>
|
||||
#include <glibmm.h>
|
||||
|
||||
#include "improcfun.h"
|
||||
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
//#define PROFILE
|
||||
|
||||
#ifdef PROFILE
|
||||
# include <iostream>
|
||||
#endif
|
||||
|
||||
namespace rtengine {
|
||||
|
||||
@ -35,55 +39,55 @@ namespace rtengine {
|
||||
#define CLIP(a) ((a)>0?((a)<CMAXVAL?(a):CMAXVAL):0)
|
||||
#define CLIPTO(a,b,c) ((a)>(b)?((a)<(c)?(a):(c)):(b))
|
||||
|
||||
inline double Lanc(double x, double a)
|
||||
static inline float Lanc(float x, float a)
|
||||
{
|
||||
if (x * x < 1e-6)
|
||||
return 1.0;
|
||||
if (x * x < 1e-6f)
|
||||
return 1.0f;
|
||||
else if (x * x > a * a)
|
||||
return 0.0;
|
||||
return 0.0f;
|
||||
else {
|
||||
x = M_PI * x;
|
||||
return sin(x) * sin(x / a) / (x * x / a);
|
||||
x = static_cast<float>(M_PI) * x;
|
||||
return sinf(x) * sinf(x / a) / (x * x / a);
|
||||
}
|
||||
}
|
||||
|
||||
void Lanczos(const Image16* src, Image16* dst, double scale)
|
||||
static void Lanczos(const Image16* src, Image16* dst, float scale)
|
||||
{
|
||||
const double delta = 1.0 / scale;
|
||||
const double a = 3.0;
|
||||
const double sc = std::min(scale, 1.0);
|
||||
const int support = (int)(2.0 * a / sc) + 1;
|
||||
const float delta = 1.0f / scale;
|
||||
const float a = 3.0f;
|
||||
const float sc = std::min(scale, 1.0f);
|
||||
const int support = static_cast<int>(2.0f * a / sc) + 1;
|
||||
|
||||
// storage for precomputed parameters for horisontal interpolation
|
||||
double * wwh = new double[support * dst->width];
|
||||
float * wwh = new float[support * dst->width];
|
||||
int * jj0 = new int[dst->width];
|
||||
int * jj1 = new int[dst->width];
|
||||
|
||||
// temporal storage for vertically-interpolated row of pixels
|
||||
double * lr = new double[src->width];
|
||||
double * lg = new double[src->width];
|
||||
double * lb = new double[src->width];
|
||||
float * lr = new float[src->width];
|
||||
float * lg = new float[src->width];
|
||||
float * lb = new float[src->width];
|
||||
|
||||
// Phase 1: precompute coefficients for horisontal interpolation
|
||||
|
||||
for (int j = 0; j < dst->width; j++) {
|
||||
|
||||
// x coord of the center of pixel on src image
|
||||
double x0 = (j + 0.5) * delta - 0.5;
|
||||
float x0 = (static_cast<float>(j) + 0.5f) * delta - 0.5f;
|
||||
|
||||
// weights for interpolation in horisontal direction
|
||||
double * w = wwh + j * support;
|
||||
float * w = wwh + j * support;
|
||||
|
||||
// sum of weights used for normalization
|
||||
double ws = 0.0;
|
||||
float ws = 0.0f;
|
||||
|
||||
jj0[j] = std::max(0, (int)floor(x0 - a / sc) + 1);
|
||||
jj1[j] = std::min(src->width, (int)floor(x0 + a / sc) + 1);
|
||||
jj0[j] = std::max(0, static_cast<int>(floorf(x0 - a / sc)) + 1);
|
||||
jj1[j] = std::min(src->width, static_cast<int>(floorf(x0 + a / sc)) + 1);
|
||||
|
||||
// calculate weights
|
||||
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
|
||||
int k = jj - jj0[j];
|
||||
double z = sc * (x0 - jj);
|
||||
float z = sc * (x0 - static_cast<float>(jj));
|
||||
w[k] = Lanc(z, a);
|
||||
ws += w[k];
|
||||
}
|
||||
@ -99,21 +103,21 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
|
||||
for (int i = 0; i < dst->height; i++) {
|
||||
|
||||
// y coord of the center of pixel on src image
|
||||
double y0 = (i + 0.5) * delta - 0.5;
|
||||
float y0 = (static_cast<float>(i) + 0.5f) * delta - 0.5f;
|
||||
|
||||
// weights for interpolation in y direction
|
||||
double w[support];
|
||||
float w[support];
|
||||
|
||||
// sum of weights used for normalization
|
||||
double ws= 0.0;
|
||||
float ws= 0.0f;
|
||||
|
||||
int ii0 = std::max(0, (int)floor(y0 - a / sc) + 1);
|
||||
int ii1 = std::min(src->height, (int)floor(y0 + a / sc) + 1);
|
||||
int ii0 = std::max(0, static_cast<int>(floorf(y0 - a / sc)) + 1);
|
||||
int ii1 = std::min(src->height, static_cast<int>(floorf(y0 + a / sc)) + 1);
|
||||
|
||||
// calculate weights for vertical interpolation
|
||||
for (int ii = ii0; ii < ii1; ii++) {
|
||||
int k = ii - ii0;
|
||||
double z = sc * (y0 - ii);
|
||||
float z = sc * (y0 - static_cast<float>(ii));
|
||||
w[k] = Lanc(z, a);
|
||||
ws += w[k];
|
||||
}
|
||||
@ -126,7 +130,7 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
|
||||
// Do vertical interpolation. Store results.
|
||||
for (int j = 0; j < src->width; j++) {
|
||||
|
||||
double r = 0.0, g = 0.0, b = 0.0;
|
||||
float r = 0.0f, g = 0.0f, b = 0.0f;
|
||||
|
||||
for (int ii = ii0; ii < ii1; ii++) {
|
||||
int k = ii - ii0;
|
||||
@ -144,9 +148,9 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
|
||||
// Do horisontal interpolation
|
||||
for(int j = 0; j < dst->width; j++) {
|
||||
|
||||
double * wh = wwh + support * j;
|
||||
float * wh = wwh + support * j;
|
||||
|
||||
double r = 0.0, g = 0.0, b = 0.0;
|
||||
float r = 0.0f, g = 0.0f, b = 0.0f;
|
||||
|
||||
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
|
||||
int k = jj - jj0[j];
|
||||
@ -156,9 +160,9 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
|
||||
b += wh[k] * lb[jj];
|
||||
}
|
||||
|
||||
dst->r[i][j] = CLIP((int)r);
|
||||
dst->g[i][j] = CLIP((int)g);
|
||||
dst->b[i][j] = CLIP((int)b);
|
||||
dst->r[i][j] = CLIP(static_cast<int>(r));
|
||||
dst->g[i][j] = CLIP(static_cast<int>(g));
|
||||
dst->b[i][j] = CLIP(static_cast<int>(b));
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,204 +174,58 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
|
||||
delete[] lb;
|
||||
}
|
||||
|
||||
void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
|
||||
void ImProcFunctions::resize (Image16* src, Image16* dst, float dScale) {
|
||||
|
||||
//time_t t1 = clock();
|
||||
#ifdef PROFILE
|
||||
time_t t1 = clock();
|
||||
#endif
|
||||
|
||||
if(params->resize.method == "Lanczos") {
|
||||
if(params->resize.method == "Lanczos" ||
|
||||
params->resize.method == "Downscale (Better)" ||
|
||||
params->resize.method == "Downscale (Faster)"
|
||||
) {
|
||||
Lanczos(src, dst, dScale);
|
||||
}
|
||||
else if(params->resize.method == "Downscale (Better)") {
|
||||
// small-scale algorithm by Ilia
|
||||
// provides much better quality on small scales
|
||||
// calculates mean value over source pixels which current destination pixel covers
|
||||
// works only for scales < 1
|
||||
// for scales ~1 it is analogous to bilinear
|
||||
// possibly, for even less scale factors (< 0.2 possibly) boundary pixels are not needed, omitting them can give a speedup
|
||||
// this algorithm is much slower on small factors than others, because it uses all pixels of the SOURCE image
|
||||
// Ilia Popov ilia_popov@rambler.ru 2010
|
||||
|
||||
double delta = 1.0 / dScale;
|
||||
double k = dScale * dScale;
|
||||
|
||||
#pragma omp parallel for if (multiThread)
|
||||
for(int i = 0; i < dst->height; i++) {
|
||||
// top and bottom boundary coordinates
|
||||
double y0 = i * delta;
|
||||
double y1 = (i + 1) * delta;
|
||||
|
||||
int m0 = y0;
|
||||
m0 = CLIPTO(m0, 0, src->height-1);
|
||||
|
||||
int m1 = y1;
|
||||
m1 = CLIPTO(m1, 0, src->height-1);
|
||||
|
||||
// weights of boundary pixels
|
||||
double wy0 = 1.0 - (y0 - m0);
|
||||
double wy1 = y1 - m1;
|
||||
|
||||
for(int j = 0; j < dst->width; j++) {
|
||||
// left and right boundary coordinates
|
||||
double x0 = j * delta;
|
||||
double x1 = (j + 1) * delta;
|
||||
|
||||
int n0 = x0;
|
||||
n0 = CLIPTO(n0, 0, src->width-1);
|
||||
int n1 = x1;
|
||||
n1 = CLIPTO(n1, 0, src->width-1);
|
||||
|
||||
double wx0 = 1.0 - (x0 - n0);
|
||||
double wx1 = x1 - n1;
|
||||
|
||||
double r = 0;
|
||||
double g = 0;
|
||||
double b = 0;
|
||||
|
||||
// integration
|
||||
// corners
|
||||
r += wy0 * wx0 * src->r[m0][n0] + wy0 * wx1 * src->r[m0][n1] + wy1 * wx0 * src->r[m1][n0] + wy1 * wx1 * src->r[m1][n1];
|
||||
g += wy0 * wx0 * src->g[m0][n0] + wy0 * wx1 * src->g[m0][n1] + wy1 * wx0 * src->g[m1][n0] + wy1 * wx1 * src->g[m1][n1];
|
||||
b += wy0 * wx0 * src->b[m0][n0] + wy0 * wx1 * src->b[m0][n1] + wy1 * wx0 * src->b[m1][n0] + wy1 * wx1 * src->b[m1][n1];
|
||||
|
||||
// top and bottom boundaries
|
||||
for(int n = n0 + 1; n < n1; n++) {
|
||||
r += wy0 * src->r[m0][n] + wy1 * src->r[m1][n];
|
||||
g += wy0 * src->g[m0][n] + wy1 * src->g[m1][n];
|
||||
b += wy0 * src->b[m0][n] + wy1 * src->b[m1][n];
|
||||
}
|
||||
|
||||
// inner rows
|
||||
for(int m = m0 + 1; m < m1; m++) {
|
||||
// left and right boundaries
|
||||
r += wx0 * src->r[m][n0] + wx1 * src->r[m][n1];
|
||||
g += wx0 * src->g[m][n0] + wx1 * src->g[m][n1];
|
||||
b += wx0 * src->b[m][n0] + wx1 * src->b[m][n1];
|
||||
// inner pixels
|
||||
for(int n = n0 + 1; n < n1; n++) {
|
||||
r += src->r[m][n];
|
||||
g += src->g[m][n];
|
||||
b += src->b[m][n];
|
||||
}
|
||||
}
|
||||
// overall weight is equal to the DST pixel area in SRC coordinates
|
||||
r *= k;
|
||||
g *= k;
|
||||
b *= k;
|
||||
|
||||
dst->r[i][j] = CLIP((int)r);
|
||||
dst->g[i][j] = CLIP((int)g);
|
||||
dst->b[i][j] = CLIP((int)b);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if(params->resize.method == "Downscale (Faster)") {
|
||||
// faster version of algo above, does not take into account border pixels,
|
||||
// which are summed with non-unity weights in slow algo. So, no need
|
||||
// for weights at all
|
||||
// Ilia Popov ilia_popov@rambler.ru 5.04.2010
|
||||
|
||||
double delta = 1.0 / dScale;
|
||||
|
||||
int p = (int) delta;
|
||||
|
||||
// if actually we are doing upscaling, behave like Nearest
|
||||
if(p == 0)
|
||||
p = 1;
|
||||
|
||||
int q = p/2;
|
||||
|
||||
// may cause problems on 32-bit systems on extremely small factors.
|
||||
// In that case change 1024 to smth less
|
||||
const int divider = 1024;
|
||||
|
||||
// scaling factor after summation
|
||||
int k = divider / (p * p);
|
||||
|
||||
#pragma omp parallel for if (multiThread)
|
||||
for(int i = 0; i < dst->height; i++) {
|
||||
// y coordinate of center of destination pixel
|
||||
double y = (i + 0.5) * delta;
|
||||
|
||||
int m0 = (int) (y) - q;
|
||||
m0 = CLIPTO(m0, 0, src->height-1);
|
||||
|
||||
int m1 = m0 + p;
|
||||
if(m1 > src->height) {
|
||||
m1 = src->height;
|
||||
m0 = m1 - p;
|
||||
}
|
||||
m1 = CLIPTO(m1, 0, src->height);
|
||||
|
||||
for(int j = 0; j < dst->width; j++) {
|
||||
// x coordinate of center of destination pixel
|
||||
double x = (j + 0.5) * delta;
|
||||
|
||||
int n0 = (int) (x) - q;
|
||||
n0 = CLIPTO(n0, 0, src->width-1);
|
||||
|
||||
int n1 = n0 + p;
|
||||
if(n1 > src->width) {
|
||||
n1 = src->width;
|
||||
n0 = n1 - p;
|
||||
}
|
||||
n1 = CLIPTO(n1, 0, src->width);
|
||||
|
||||
int r = 0;
|
||||
int g = 0;
|
||||
int b = 0;
|
||||
|
||||
// integration
|
||||
for(int m = m0; m < m1; m++) {
|
||||
for(int n = n0; n < n1; n++) {
|
||||
r += src->r[m][n];
|
||||
g += src->g[m][n];
|
||||
b += src->b[m][n];
|
||||
}
|
||||
}
|
||||
dst->r[i][j] = CLIP( r * k / divider);
|
||||
dst->g[i][j] = CLIP( g * k / divider);
|
||||
dst->b[i][j] = CLIP( b * k / divider);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (params->resize.method.substr(0,7)=="Bicubic") {
|
||||
double Av = -0.5;
|
||||
float Av = -0.5f;
|
||||
if (params->resize.method=="Bicubic (Sharper)")
|
||||
Av = -0.75;
|
||||
Av = -0.75f;
|
||||
else if (params->resize.method=="Bicubic (Softer)")
|
||||
Av = -0.25;
|
||||
Av = -0.25f;
|
||||
#pragma omp parallel for if (multiThread)
|
||||
for (int i=0; i<dst->height; i++) {
|
||||
double wx[4], wy[4];
|
||||
double Dy = i / dScale;
|
||||
int yc = (int) Dy; Dy -= (double)yc;
|
||||
float wx[4], wy[4];
|
||||
float Dy = i / dScale;
|
||||
int yc = (int) Dy;
|
||||
Dy -= (float)yc;
|
||||
int ys = yc - 1; // smallest y-index used for interpolation
|
||||
// compute vertical weights
|
||||
double t1y = -Av*(Dy-1.0)*Dy;
|
||||
double t2y = (3.0-2.0*Dy)*Dy*Dy;
|
||||
float t1y = -Av*(Dy-1.0f)*Dy;
|
||||
float t2y = (3.0f - 2.0f*Dy)*Dy*Dy;
|
||||
wy[3] = t1y*Dy;
|
||||
wy[2] = t1y*(Dy-1.0) + t2y;
|
||||
wy[1] = -t1y*Dy + 1.0 - t2y;
|
||||
wy[0] = -t1y*(Dy-1.0);
|
||||
for (int j=0; j<dst->width; j++) {
|
||||
double Dx = j / dScale;
|
||||
int xc = (int) Dx; Dx -= (double)xc;
|
||||
wy[2] = t1y*(Dy - 1.0f) + t2y;
|
||||
wy[1] = -t1y*Dy + 1.0f - t2y;
|
||||
wy[0] = -t1y*(Dy - 1.0f);
|
||||
for (int j = 0; j < dst->width; j++) {
|
||||
float Dx = j / dScale;
|
||||
int xc = (int) Dx;
|
||||
Dx -= (float)xc;
|
||||
int xs = xc - 1; // smallest x-index used for interpolation
|
||||
if (ys >= 0 && ys <src->height-3 && xs >= 0 && xs <= src->width-3) {
|
||||
if (ys >= 0 && ys < src->height-3 && xs >= 0 && xs <= src->width-3) {
|
||||
// compute horizontal weights
|
||||
double t1 = -Av*(Dx-1.0)*Dx;
|
||||
double t2 = (3.0-2.0*Dx)*Dx*Dx;
|
||||
float t1 = -Av*(Dx-1.0f)*Dx;
|
||||
float t2 = (3.0f - 2.0f*Dx)*Dx*Dx;
|
||||
wx[3] = t1*Dx;
|
||||
wx[2] = t1*(Dx-1.0) + t2;
|
||||
wx[1] = -t1*Dx + 1.0 - t2;
|
||||
wx[0] = -t1*(Dx-1.0);
|
||||
wx[2] = t1*(Dx - 1.0f) + t2;
|
||||
wx[1] = -t1*Dx + 1.0f - t2;
|
||||
wx[0] = -t1*(Dx - 1.0f);
|
||||
// compute weighted sum
|
||||
int r = 0;
|
||||
int g = 0;
|
||||
int b = 0;
|
||||
for (int x=0; x<4; x++)
|
||||
for (int y=0; y<4; y++) {
|
||||
double w = wx[x]*wy[y];
|
||||
float w = wx[x]*wy[y];
|
||||
r += w*src->r[ys+y][xs+x];
|
||||
g += w*src->g[ys+y][xs+x];
|
||||
b += w*src->b[ys+y][xs+x];
|
||||
@ -380,10 +238,10 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
|
||||
xc = CLIPTO(xc, 0, src->width-1);
|
||||
yc = CLIPTO(yc, 0, src->height-1);
|
||||
int nx = xc + 1;
|
||||
if (nx>=src->width)
|
||||
if (nx >= src->width)
|
||||
nx = xc;
|
||||
int ny = yc + 1;
|
||||
if (ny>=src->height)
|
||||
if (ny >= src->height)
|
||||
ny = yc;
|
||||
dst->r[i][j] = (1-Dx)*(1-Dy)*src->r[yc][xc] + (1-Dx)*Dy*src->r[ny][xc] + Dx*(1-Dy)*src->r[yc][nx] + Dx*Dy*src->r[ny][nx];
|
||||
dst->g[i][j] = (1-Dx)*(1-Dy)*src->g[yc][xc] + (1-Dx)*Dy*src->g[ny][xc] + Dx*(1-Dy)*src->g[yc][nx] + Dx*Dy*src->g[ny][nx];
|
||||
@ -397,14 +255,14 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
|
||||
for (int i=0; i<dst->height; i++) {
|
||||
int sy = i/dScale;
|
||||
sy = CLIPTO(sy, 0, src->height-1);
|
||||
double dy = i/dScale - sy;
|
||||
float dy = i/dScale - sy;
|
||||
int ny = sy+1;
|
||||
if (ny>=src->height)
|
||||
ny = sy;
|
||||
for (int j=0; j<dst->width; j++) {
|
||||
int sx = j/dScale;
|
||||
sx = CLIPTO(sx, 0, src->width-1);
|
||||
double dx = j/dScale - sx;
|
||||
float dx = j/dScale - sx;
|
||||
int nx = sx+1;
|
||||
if (nx>=src->width)
|
||||
nx = sx;
|
||||
@ -415,6 +273,7 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
|
||||
}
|
||||
}
|
||||
else {
|
||||
// Nearest neighbour algorithm
|
||||
#pragma omp parallel for if (multiThread)
|
||||
for (int i=0; i<dst->height; i++) {
|
||||
int sy = i/dScale;
|
||||
@ -428,10 +287,12 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//time_t t2 = clock();
|
||||
//std::cout << "Resize: " << params->resize.method << ": "
|
||||
// << (double)(t2 - t1) / CLOCKS_PER_SEC << std::endl;
|
||||
|
||||
#ifdef PROFILE
|
||||
time_t t2 = clock();
|
||||
std::cout << "Resize: " << params->resize.method << ": "
|
||||
<< (float)(t2 - t1) / CLOCKS_PER_SEC << std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -48,8 +48,6 @@ Resize::Resize () : Gtk::VBox(), FoldableToolPanel(this), maxw(100000), maxh(100
|
||||
method->append_text (M("TP_RESIZE_BICUBIC"));
|
||||
method->append_text (M("TP_RESIZE_BICUBICSF"));
|
||||
method->append_text (M("TP_RESIZE_BICUBICSH"));
|
||||
method->append_text (M("TP_RESIZE_DOWNSCALEB"));
|
||||
method->append_text (M("TP_RESIZE_DOWNSCALEF"));
|
||||
method->append_text (M("TP_RESIZE_LANCZOS"));
|
||||
method->set_active (0);
|
||||
|
||||
@ -150,12 +148,13 @@ void Resize::read (const ProcParams* pp, const ParamsEdited* pedited) {
|
||||
method->set_active (3);
|
||||
else if (pp->resize.method == "Bicubic (Sharper)")
|
||||
method->set_active (4);
|
||||
else if (pp->resize.method == "Downscale (Better)")
|
||||
method->set_active (5);
|
||||
else if (pp->resize.method == "Downscale (Faster)")
|
||||
method->set_active (6);
|
||||
else if (pp->resize.method == "Lanczos")
|
||||
method->set_active (7);
|
||||
method->set_active (5);
|
||||
else if (pp->resize.method == "Downscale (Better)" ||
|
||||
pp->resize.method == "Downscale (Faster)")
|
||||
{
|
||||
method->set_active (5);
|
||||
}
|
||||
|
||||
wDirty = false;
|
||||
hDirty = false;
|
||||
@ -206,10 +205,6 @@ void Resize::write (ProcParams* pp, ParamsEdited* pedited) {
|
||||
else if (method->get_active_row_number() == 4)
|
||||
pp->resize.method = "Bicubic (Sharper)";
|
||||
else if (method->get_active_row_number() == 5)
|
||||
pp->resize.method = "Downscale (Better)";
|
||||
else if (method->get_active_row_number() == 6)
|
||||
pp->resize.method = "Downscale (Faster)";
|
||||
else if (method->get_active_row_number() == 7)
|
||||
pp->resize.method = "Lanczos";
|
||||
|
||||
pp->resize.dataspec = dataSpec;
|
||||
|
Loading…
x
Reference in New Issue
Block a user