Removed obsoleted resize algos Downscale Faster/Better. Applied Lanczos instead. Ported all resize algos to float instead of double. Removed corresponding strings from default language file.

This commit is contained in:
Ilia Popov 2011-10-30 23:16:22 +01:00
parent b51e929d4a
commit 9531a37b3a
6 changed files with 90 additions and 240 deletions

View File

@ -916,8 +916,6 @@ TP_RAW_FALSECOLOR;False colour suppression steps
!TP_RESIZE_BICUBICSH;Bicubic (Sharper)
!TP_RESIZE_BILINEAR;Bilinear
!TP_RESIZE_CROPPEDAREA;Cropped area
!TP_RESIZE_DOWNSCALEB;Downscale (Better)
!TP_RESIZE_DOWNSCALEF;Downscale (Faster)
!TP_RESIZE_FITBOX;Bounding box
!TP_RESIZE_FULLIMAGE;Full image
!TP_RESIZE_FULLSIZE;Full Image Size:

View File

@ -921,8 +921,6 @@ HISTOGRAM_TOOLTIP_BAR;Show/Hide RBG indicator bar\nClick right mouse button on i
!TP_RESIZE_BICUBICSH;Bicubic (Sharper)
!TP_RESIZE_BILINEAR;Bilinear
!TP_RESIZE_CROPPEDAREA;Cropped area
!TP_RESIZE_DOWNSCALEB;Downscale (Better)
!TP_RESIZE_DOWNSCALEF;Downscale (Faster)
!TP_RESIZE_FITBOX;Bounding box
!TP_RESIZE_FULLIMAGE;Full image
!TP_RESIZE_FULLSIZE;Full Image Size:

View File

@ -932,8 +932,6 @@ TP_RESIZE_BICUBICSF;Bicubic (Softer)
TP_RESIZE_BICUBICSH;Bicubic (Sharper)
TP_RESIZE_BILINEAR;Bilinear
TP_RESIZE_CROPPEDAREA;Cropped area
TP_RESIZE_DOWNSCALEB;Downscale (Better)
TP_RESIZE_DOWNSCALEF;Downscale (Faster)
TP_RESIZE_FITBOX;Bounding box
TP_RESIZE_FULLIMAGE;Full image
TP_RESIZE_FULLSIZE;Full Image Size:

View File

@ -121,7 +121,7 @@ class ImProcFunctions {
void sharpening (LabImage* lab, float** buffer);
void transform (Imagefloat* original, Imagefloat* transformed, int cx, int cy, int sx, int sy, int oW, int oH);
void lab2rgb (LabImage* lab, Image8* image);
void resize (Image16* src, Image16* dst, double dScale);
void resize (Image16* src, Image16* dst, float dScale);
void deconvsharpening (LabImage* lab, float** buffer);
void MLsharpen (LabImage* lab);// Manuel's clarity / sharpening
void MLmicrocontrast(LabImage* lab ); //Manuel's microcontrast

View File

@ -16,14 +16,18 @@
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <rtengine.h>
#include <improcfun.h>
#include <glibmm.h>
#include "improcfun.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include <iostream>
//#define PROFILE
#ifdef PROFILE
# include <iostream>
#endif
namespace rtengine {
@ -35,55 +39,55 @@ namespace rtengine {
#define CLIP(a) ((a)>0?((a)<CMAXVAL?(a):CMAXVAL):0)
#define CLIPTO(a,b,c) ((a)>(b)?((a)<(c)?(a):(c)):(b))
inline double Lanc(double x, double a)
static inline float Lanc(float x, float a)
{
if (x * x < 1e-6)
return 1.0;
if (x * x < 1e-6f)
return 1.0f;
else if (x * x > a * a)
return 0.0;
return 0.0f;
else {
x = M_PI * x;
return sin(x) * sin(x / a) / (x * x / a);
x = static_cast<float>(M_PI) * x;
return sinf(x) * sinf(x / a) / (x * x / a);
}
}
void Lanczos(const Image16* src, Image16* dst, double scale)
static void Lanczos(const Image16* src, Image16* dst, float scale)
{
const double delta = 1.0 / scale;
const double a = 3.0;
const double sc = std::min(scale, 1.0);
const int support = (int)(2.0 * a / sc) + 1;
const float delta = 1.0f / scale;
const float a = 3.0f;
const float sc = std::min(scale, 1.0f);
const int support = static_cast<int>(2.0f * a / sc) + 1;
// storage for precomputed parameters for horisontal interpolation
double * wwh = new double[support * dst->width];
float * wwh = new float[support * dst->width];
int * jj0 = new int[dst->width];
int * jj1 = new int[dst->width];
// temporal storage for vertically-interpolated row of pixels
double * lr = new double[src->width];
double * lg = new double[src->width];
double * lb = new double[src->width];
float * lr = new float[src->width];
float * lg = new float[src->width];
float * lb = new float[src->width];
// Phase 1: precompute coefficients for horisontal interpolation
for (int j = 0; j < dst->width; j++) {
// x coord of the center of pixel on src image
double x0 = (j + 0.5) * delta - 0.5;
float x0 = (static_cast<float>(j) + 0.5f) * delta - 0.5f;
// weights for interpolation in horisontal direction
double * w = wwh + j * support;
float * w = wwh + j * support;
// sum of weights used for normalization
double ws = 0.0;
float ws = 0.0f;
jj0[j] = std::max(0, (int)floor(x0 - a / sc) + 1);
jj1[j] = std::min(src->width, (int)floor(x0 + a / sc) + 1);
jj0[j] = std::max(0, static_cast<int>(floorf(x0 - a / sc)) + 1);
jj1[j] = std::min(src->width, static_cast<int>(floorf(x0 + a / sc)) + 1);
// calculate weights
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
double z = sc * (x0 - jj);
float z = sc * (x0 - static_cast<float>(jj));
w[k] = Lanc(z, a);
ws += w[k];
}
@ -99,21 +103,21 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
for (int i = 0; i < dst->height; i++) {
// y coord of the center of pixel on src image
double y0 = (i + 0.5) * delta - 0.5;
float y0 = (static_cast<float>(i) + 0.5f) * delta - 0.5f;
// weights for interpolation in y direction
double w[support];
float w[support];
// sum of weights used for normalization
double ws= 0.0;
float ws= 0.0f;
int ii0 = std::max(0, (int)floor(y0 - a / sc) + 1);
int ii1 = std::min(src->height, (int)floor(y0 + a / sc) + 1);
int ii0 = std::max(0, static_cast<int>(floorf(y0 - a / sc)) + 1);
int ii1 = std::min(src->height, static_cast<int>(floorf(y0 + a / sc)) + 1);
// calculate weights for vertical interpolation
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
double z = sc * (y0 - ii);
float z = sc * (y0 - static_cast<float>(ii));
w[k] = Lanc(z, a);
ws += w[k];
}
@ -126,7 +130,7 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
// Do vertical interpolation. Store results.
for (int j = 0; j < src->width; j++) {
double r = 0.0, g = 0.0, b = 0.0;
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
@ -144,9 +148,9 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
// Do horisontal interpolation
for(int j = 0; j < dst->width; j++) {
double * wh = wwh + support * j;
float * wh = wwh + support * j;
double r = 0.0, g = 0.0, b = 0.0;
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
@ -156,9 +160,9 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
b += wh[k] * lb[jj];
}
dst->r[i][j] = CLIP((int)r);
dst->g[i][j] = CLIP((int)g);
dst->b[i][j] = CLIP((int)b);
dst->r[i][j] = CLIP(static_cast<int>(r));
dst->g[i][j] = CLIP(static_cast<int>(g));
dst->b[i][j] = CLIP(static_cast<int>(b));
}
}
@ -170,204 +174,58 @@ void Lanczos(const Image16* src, Image16* dst, double scale)
delete[] lb;
}
void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
void ImProcFunctions::resize (Image16* src, Image16* dst, float dScale) {
//time_t t1 = clock();
#ifdef PROFILE
time_t t1 = clock();
#endif
if(params->resize.method == "Lanczos") {
if(params->resize.method == "Lanczos" ||
params->resize.method == "Downscale (Better)" ||
params->resize.method == "Downscale (Faster)"
) {
Lanczos(src, dst, dScale);
}
else if(params->resize.method == "Downscale (Better)") {
// small-scale algorithm by Ilia
// provides much better quality on small scales
// calculates mean value over source pixels which current destination pixel covers
// works only for scales < 1
// for scales ~1 it is analogous to bilinear
// possibly, for even less scale factors (< 0.2 possibly) boundary pixels are not needed, omitting them can give a speedup
// this algorithm is much slower on small factors than others, because it uses all pixels of the SOURCE image
// Ilia Popov ilia_popov@rambler.ru 2010
double delta = 1.0 / dScale;
double k = dScale * dScale;
#pragma omp parallel for if (multiThread)
for(int i = 0; i < dst->height; i++) {
// top and bottom boundary coordinates
double y0 = i * delta;
double y1 = (i + 1) * delta;
int m0 = y0;
m0 = CLIPTO(m0, 0, src->height-1);
int m1 = y1;
m1 = CLIPTO(m1, 0, src->height-1);
// weights of boundary pixels
double wy0 = 1.0 - (y0 - m0);
double wy1 = y1 - m1;
for(int j = 0; j < dst->width; j++) {
// left and right boundary coordinates
double x0 = j * delta;
double x1 = (j + 1) * delta;
int n0 = x0;
n0 = CLIPTO(n0, 0, src->width-1);
int n1 = x1;
n1 = CLIPTO(n1, 0, src->width-1);
double wx0 = 1.0 - (x0 - n0);
double wx1 = x1 - n1;
double r = 0;
double g = 0;
double b = 0;
// integration
// corners
r += wy0 * wx0 * src->r[m0][n0] + wy0 * wx1 * src->r[m0][n1] + wy1 * wx0 * src->r[m1][n0] + wy1 * wx1 * src->r[m1][n1];
g += wy0 * wx0 * src->g[m0][n0] + wy0 * wx1 * src->g[m0][n1] + wy1 * wx0 * src->g[m1][n0] + wy1 * wx1 * src->g[m1][n1];
b += wy0 * wx0 * src->b[m0][n0] + wy0 * wx1 * src->b[m0][n1] + wy1 * wx0 * src->b[m1][n0] + wy1 * wx1 * src->b[m1][n1];
// top and bottom boundaries
for(int n = n0 + 1; n < n1; n++) {
r += wy0 * src->r[m0][n] + wy1 * src->r[m1][n];
g += wy0 * src->g[m0][n] + wy1 * src->g[m1][n];
b += wy0 * src->b[m0][n] + wy1 * src->b[m1][n];
}
// inner rows
for(int m = m0 + 1; m < m1; m++) {
// left and right boundaries
r += wx0 * src->r[m][n0] + wx1 * src->r[m][n1];
g += wx0 * src->g[m][n0] + wx1 * src->g[m][n1];
b += wx0 * src->b[m][n0] + wx1 * src->b[m][n1];
// inner pixels
for(int n = n0 + 1; n < n1; n++) {
r += src->r[m][n];
g += src->g[m][n];
b += src->b[m][n];
}
}
// overall weight is equal to the DST pixel area in SRC coordinates
r *= k;
g *= k;
b *= k;
dst->r[i][j] = CLIP((int)r);
dst->g[i][j] = CLIP((int)g);
dst->b[i][j] = CLIP((int)b);
}
}
}
else if(params->resize.method == "Downscale (Faster)") {
// faster version of algo above, does not take into account border pixels,
// which are summed with non-unity weights in slow algo. So, no need
// for weights at all
// Ilia Popov ilia_popov@rambler.ru 5.04.2010
double delta = 1.0 / dScale;
int p = (int) delta;
// if actually we are doing upscaling, behave like Nearest
if(p == 0)
p = 1;
int q = p/2;
// may cause problems on 32-bit systems on extremely small factors.
// In that case change 1024 to smth less
const int divider = 1024;
// scaling factor after summation
int k = divider / (p * p);
#pragma omp parallel for if (multiThread)
for(int i = 0; i < dst->height; i++) {
// y coordinate of center of destination pixel
double y = (i + 0.5) * delta;
int m0 = (int) (y) - q;
m0 = CLIPTO(m0, 0, src->height-1);
int m1 = m0 + p;
if(m1 > src->height) {
m1 = src->height;
m0 = m1 - p;
}
m1 = CLIPTO(m1, 0, src->height);
for(int j = 0; j < dst->width; j++) {
// x coordinate of center of destination pixel
double x = (j + 0.5) * delta;
int n0 = (int) (x) - q;
n0 = CLIPTO(n0, 0, src->width-1);
int n1 = n0 + p;
if(n1 > src->width) {
n1 = src->width;
n0 = n1 - p;
}
n1 = CLIPTO(n1, 0, src->width);
int r = 0;
int g = 0;
int b = 0;
// integration
for(int m = m0; m < m1; m++) {
for(int n = n0; n < n1; n++) {
r += src->r[m][n];
g += src->g[m][n];
b += src->b[m][n];
}
}
dst->r[i][j] = CLIP( r * k / divider);
dst->g[i][j] = CLIP( g * k / divider);
dst->b[i][j] = CLIP( b * k / divider);
}
}
}
else if (params->resize.method.substr(0,7)=="Bicubic") {
double Av = -0.5;
float Av = -0.5f;
if (params->resize.method=="Bicubic (Sharper)")
Av = -0.75;
Av = -0.75f;
else if (params->resize.method=="Bicubic (Softer)")
Av = -0.25;
Av = -0.25f;
#pragma omp parallel for if (multiThread)
for (int i=0; i<dst->height; i++) {
double wx[4], wy[4];
double Dy = i / dScale;
int yc = (int) Dy; Dy -= (double)yc;
float wx[4], wy[4];
float Dy = i / dScale;
int yc = (int) Dy;
Dy -= (float)yc;
int ys = yc - 1; // smallest y-index used for interpolation
// compute vertical weights
double t1y = -Av*(Dy-1.0)*Dy;
double t2y = (3.0-2.0*Dy)*Dy*Dy;
float t1y = -Av*(Dy-1.0f)*Dy;
float t2y = (3.0f - 2.0f*Dy)*Dy*Dy;
wy[3] = t1y*Dy;
wy[2] = t1y*(Dy-1.0) + t2y;
wy[1] = -t1y*Dy + 1.0 - t2y;
wy[0] = -t1y*(Dy-1.0);
for (int j=0; j<dst->width; j++) {
double Dx = j / dScale;
int xc = (int) Dx; Dx -= (double)xc;
wy[2] = t1y*(Dy - 1.0f) + t2y;
wy[1] = -t1y*Dy + 1.0f - t2y;
wy[0] = -t1y*(Dy - 1.0f);
for (int j = 0; j < dst->width; j++) {
float Dx = j / dScale;
int xc = (int) Dx;
Dx -= (float)xc;
int xs = xc - 1; // smallest x-index used for interpolation
if (ys >= 0 && ys <src->height-3 && xs >= 0 && xs <= src->width-3) {
if (ys >= 0 && ys < src->height-3 && xs >= 0 && xs <= src->width-3) {
// compute horizontal weights
double t1 = -Av*(Dx-1.0)*Dx;
double t2 = (3.0-2.0*Dx)*Dx*Dx;
float t1 = -Av*(Dx-1.0f)*Dx;
float t2 = (3.0f - 2.0f*Dx)*Dx*Dx;
wx[3] = t1*Dx;
wx[2] = t1*(Dx-1.0) + t2;
wx[1] = -t1*Dx + 1.0 - t2;
wx[0] = -t1*(Dx-1.0);
wx[2] = t1*(Dx - 1.0f) + t2;
wx[1] = -t1*Dx + 1.0f - t2;
wx[0] = -t1*(Dx - 1.0f);
// compute weighted sum
int r = 0;
int g = 0;
int b = 0;
for (int x=0; x<4; x++)
for (int y=0; y<4; y++) {
double w = wx[x]*wy[y];
float w = wx[x]*wy[y];
r += w*src->r[ys+y][xs+x];
g += w*src->g[ys+y][xs+x];
b += w*src->b[ys+y][xs+x];
@ -380,10 +238,10 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
xc = CLIPTO(xc, 0, src->width-1);
yc = CLIPTO(yc, 0, src->height-1);
int nx = xc + 1;
if (nx>=src->width)
if (nx >= src->width)
nx = xc;
int ny = yc + 1;
if (ny>=src->height)
if (ny >= src->height)
ny = yc;
dst->r[i][j] = (1-Dx)*(1-Dy)*src->r[yc][xc] + (1-Dx)*Dy*src->r[ny][xc] + Dx*(1-Dy)*src->r[yc][nx] + Dx*Dy*src->r[ny][nx];
dst->g[i][j] = (1-Dx)*(1-Dy)*src->g[yc][xc] + (1-Dx)*Dy*src->g[ny][xc] + Dx*(1-Dy)*src->g[yc][nx] + Dx*Dy*src->g[ny][nx];
@ -397,14 +255,14 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
for (int i=0; i<dst->height; i++) {
int sy = i/dScale;
sy = CLIPTO(sy, 0, src->height-1);
double dy = i/dScale - sy;
float dy = i/dScale - sy;
int ny = sy+1;
if (ny>=src->height)
ny = sy;
for (int j=0; j<dst->width; j++) {
int sx = j/dScale;
sx = CLIPTO(sx, 0, src->width-1);
double dx = j/dScale - sx;
float dx = j/dScale - sx;
int nx = sx+1;
if (nx>=src->width)
nx = sx;
@ -415,6 +273,7 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
}
}
else {
// Nearest neighbour algorithm
#pragma omp parallel for if (multiThread)
for (int i=0; i<dst->height; i++) {
int sy = i/dScale;
@ -428,10 +287,12 @@ void ImProcFunctions::resize (Image16* src, Image16* dst, double dScale) {
}
}
}
//time_t t2 = clock();
//std::cout << "Resize: " << params->resize.method << ": "
// << (double)(t2 - t1) / CLOCKS_PER_SEC << std::endl;
#ifdef PROFILE
time_t t2 = clock();
std::cout << "Resize: " << params->resize.method << ": "
<< (float)(t2 - t1) / CLOCKS_PER_SEC << std::endl;
#endif
}
}

View File

@ -48,8 +48,6 @@ Resize::Resize () : Gtk::VBox(), FoldableToolPanel(this), maxw(100000), maxh(100
method->append_text (M("TP_RESIZE_BICUBIC"));
method->append_text (M("TP_RESIZE_BICUBICSF"));
method->append_text (M("TP_RESIZE_BICUBICSH"));
method->append_text (M("TP_RESIZE_DOWNSCALEB"));
method->append_text (M("TP_RESIZE_DOWNSCALEF"));
method->append_text (M("TP_RESIZE_LANCZOS"));
method->set_active (0);
@ -150,12 +148,13 @@ void Resize::read (const ProcParams* pp, const ParamsEdited* pedited) {
method->set_active (3);
else if (pp->resize.method == "Bicubic (Sharper)")
method->set_active (4);
else if (pp->resize.method == "Downscale (Better)")
method->set_active (5);
else if (pp->resize.method == "Downscale (Faster)")
method->set_active (6);
else if (pp->resize.method == "Lanczos")
method->set_active (7);
method->set_active (5);
else if (pp->resize.method == "Downscale (Better)" ||
pp->resize.method == "Downscale (Faster)")
{
method->set_active (5);
}
wDirty = false;
hDirty = false;
@ -206,10 +205,6 @@ void Resize::write (ProcParams* pp, ParamsEdited* pedited) {
else if (method->get_active_row_number() == 4)
pp->resize.method = "Bicubic (Sharper)";
else if (method->get_active_row_number() == 5)
pp->resize.method = "Downscale (Better)";
else if (method->get_active_row_number() == 6)
pp->resize.method = "Downscale (Faster)";
else if (method->get_active_row_number() == 7)
pp->resize.method = "Lanczos";
pp->resize.dataspec = dataSpec;