Speedup for PF_correct_RTcam()

This commit is contained in:
heckflosse
2018-02-23 13:30:52 +01:00
parent 2729b785c3
commit cfbcd6cd5b
3 changed files with 165 additions and 204 deletions

View File

@@ -23,7 +23,6 @@
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#include "gauss.h"
#include "improcfun.h"
@@ -39,18 +38,16 @@
namespace rtengine
{
void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
void ImProcFunctions::PF_correct_RT(LabImage * lab, double radius, int thresh)
{
BENCHFUN
const int halfwin = std::ceil(2 * radius) + 1;
std::unique_ptr<FlatCurve> chCurve;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
chCurve.reset(new FlatCurve(params->defringe.huecurve));
}
// local variables
const int width = src->W, height = src->H;
const int width = lab->W, height = lab->H;
//temporary array to store chromaticity
const std::unique_ptr<float[]> fringe(new float[width * height]);
@@ -58,23 +55,17 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
JaggedArray<float> tmpa(width, height);
JaggedArray<float> tmpb(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(src->a, tmpa, width, height, radius);
gaussianBlur(src->b, tmpb, width, height, radius);
}
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.f;
gaussianBlur(lab->a, tmpa, width, height, radius);
gaussianBlur(lab->b, tmpb, width, height, radius);
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
@@ -85,24 +76,25 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
int k = 0;
for (; k < width - 3; k += 4) {
STVFU(fringe[i * width + k], xatan2f(LVFU(src->b[i][k]), LVFU(src->a[i][k])));
STVFU(fringe[i * width + k], xatan2f(LVFU(lab->b[i][k]), LVFU(lab->a[i][k])));
}
for (; k < width; k++) {
fringe[i * width + k] = xatan2f(src->b[i][k], src->a[i][k]);
fringe[i * width + k] = xatan2f(lab->b[i][k], lab->a[i][k]);
}
}
#endif
for (int j = 0; j < width; j++) {
float chromaChfactor = 1.f;
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan values
const float HH = fringe[i * width + j];
#else
// no precalculated values without SSE => calculate
const float HH = xatan2f(src->b[i][j], src->a[i][j]);
const float HH = xatan2f(lab->b[i][j], lab->a[i][j]);
#endif
float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; // get C=f(H)
@@ -113,7 +105,7 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
chromaChfactor = SQR(1.f + chparam);
}
const float chroma = chromaChfactor * (SQR(src->a[i][j] - tmpa[i][j]) + SQR(src->b[i][j] - tmpb[i][j])); // modulate chroma function hue
const float chroma = chromaChfactor * (SQR(lab->a[i][j] - tmpa[i][j]) + SQR(lab->b[i][j] - tmpb[i][j])); // modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
@@ -133,9 +125,10 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
}
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
const int halfwin = std::ceil(2 * radius) + 1;
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// often, CA is not evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
@@ -156,13 +149,13 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
for (int j1 = 0; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
@@ -176,13 +169,13 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
@@ -196,23 +189,22 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
//neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}//end of ab channel averaging
}
}
void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh)
void ImProcFunctions::PF_correct_RTcam(CieImage * ncie, double radius, int thresh)
{
BENCHFUN
const int halfwin = std::ceil(2 * radius) + 1;
std::unique_ptr<FlatCurve> chCurve;
@@ -221,13 +213,13 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
}
// local variables
const int width = src->W, height = src->H;
const int width = ncie->W, height = ncie->H;
//temporary array to store chromaticity
const std::unique_ptr<float[]> fringe(new float[width * height]);
float** const sraa = src->h_p; // we use the src->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure
float** const srbb = src->C_p; // we use the src->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure
float** const sraa = ncie->h_p; // we use the ncie->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure
float** const srbb = ncie->C_p; // we use the ncie->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure
JaggedArray<float> tmaa(width, height);
JaggedArray<float> tmbb(width, height);
@@ -247,40 +239,37 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(src->h_p[i][j]));
STVFU(sraa[i][j], LVFU(src->C_p[i][j]) * sincosvalv.y);
STVFU(srbb[i][j], LVFU(src->C_p[i][j]) * sincosvalv.x);
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
STVFU(sraa[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.y);
STVFU(srbb[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.x);
}
#endif
for (; j < width; j++) {
const float2 sincosval = xsincosf(RT_PI_F_180 * src->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x;
const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
}
}
}
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(sraa, tmaa, width, height, radius);
gaussianBlur(srbb, tmbb, width, height, radius);
}
float chromaChfactor = 1.f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
if (chCurve) {
// vectorized precalculation of the atan2 values
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
// vectorized per row precalculation of the atan2 values
if (chCurve) {
int j = 0;
for (; j < width - 3; j += 4) {
STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j])));
@@ -290,23 +279,8 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]);
}
}
}
}
#endif
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (chCurve) {
#ifdef __SSE2__
@@ -345,6 +319,7 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
}
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
const int halfwin = std::ceil(2 * radius) + 1;
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
@@ -352,6 +327,8 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
@@ -359,13 +336,9 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < halfwin - 1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
@@ -373,22 +346,19 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
btot += wt * srbb[i1][j1];
norm += wt;
}
if (norm > 0.f) {
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
}
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
}
for (; j < width - halfwin + 1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
@@ -396,22 +366,19 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
btot += wt * srbb[i1][j1];
norm += wt;
}
if (norm > 0.f) {
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
}
}
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
}
for (; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
//neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1];
@@ -419,48 +386,42 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
btot += wt * srbb[i1][j1];
norm += wt;
}
if (norm > 0.f) {
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
}
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
}
} //end of ab channel averaging
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
j = 0;
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
const vfloat interav = LVFU(tmaa[i][j]);
const vfloat interbv = LVFU(tmbb[i][j]);
STVFU(src->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180));
STVFU(src->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav)));
STVFU(ncie->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180));
STVFU(ncie->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav)));
}
#endif
for (; j < width; j++) {
const float intera = tmaa[i][j];
const float interb = tmbb[i][j];
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
}
} //end of ab channel averaging
}
}
void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, int mode, float chrom, bool hotbad)
void ImProcFunctions::Badpixelscam(CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad)
{
BENCHFUN
if (mode == 2 && radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
return;
}
const int width = src->W, height = src->H;
const int width = ncie->W, height = ncie->H;
constexpr float eps = 1.f;
@@ -474,7 +435,7 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
#endif
{
//luma sh_p
gaussianBlur(src->sh_p, tmL, width, height, radius / 2.0);//low value to avoid artifacts
gaussianBlur(ncie->sh_p, tmL, width, height, radius / 2.0);//low value to avoid artifacts
}
//luma badpixels
@@ -496,12 +457,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < 2; j++) {
const float shfabs = std::fabs(src->sh_p[i][j] - tmL[i][j]);
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += std::fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
}
}
@@ -511,12 +472,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
const vfloat shfabsv = vabsf(LVFU(src->sh_p[i][j]) - LVFU(tmL[i][j]));
const vfloat shfabsv = vabsf(LVFU(ncie->sh_p[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(src->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
shmedv += vabsf(LVFU(ncie->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
}
}
@@ -524,12 +485,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
}
#endif
for (; j < width - 2; j++) {
const float shfabs = std::fabs(src->sh_p[i][j] - tmL[i][j]);
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += std::fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
}
}
@@ -537,12 +498,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
}
for (; j < width; j++) {
const float shfabs = std::fabs(src->sh_p[i][j] - tmL[i][j]);
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
shmed += std::fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
}
}
@@ -564,18 +525,18 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) {
sum += src->sh_p[i1][j1];
sum += ncie->sh_p[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1];
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm;
ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) {
src->sh_p[i][j] = sum / tot;
ncie->sh_p[i][j] = sum / tot;
}
}
}
@@ -587,18 +548,18 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) {
sum += src->sh_p[i1][j1];
sum += ncie->sh_p[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1];
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm;
ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) {
src->sh_p[i][j] = sum / tot;
ncie->sh_p[i][j] = sum / tot;
}
}
}
@@ -610,18 +571,18 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
if (!badpix[i1 * width + j1]) {
sum += src->sh_p[i1][j1];
sum += ncie->sh_p[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1];
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm;
ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) {
src->sh_p[i][j] = sum / tot;
ncie->sh_p[i][j] = sum / tot;
}
}
}
@@ -651,15 +612,15 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
#ifdef __SSE2__
for (; j < width - 3; j += 4) {
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(src->h_p[i][j]));
STVFU(sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y);
STVFU(srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x);
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
STVFU(sraa[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.y);
STVFU(srbb[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.x);
}
#endif
for (; j < width; j++) {
const float2 sincosval = xsincosf(RT_PI_F_180 * src->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x;
const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
}
}
}
@@ -786,8 +747,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) {
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = CC;
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = CC;
}
}
}
@@ -819,8 +780,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
selMask = vandm(selMask, vmaskf_lt(CCv, chromv));
if (_mm_movemask_ps((vfloat)selMask)) {
STVFU(src->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(src->h_p[i][j])));
STVFU(src->C_p[i][j], vself(selMask, CCv, LVFU(src->C_p[i][j])));
STVFU(ncie->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(ncie->h_p[i][j])));
STVFU(ncie->C_p[i][j], vself(selMask, CCv, LVFU(ncie->C_p[i][j])));
}
}
}
@@ -845,8 +806,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) {
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = CC;
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = CC;
}
}
}
@@ -871,8 +832,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) {
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = CC;
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
ncie->C_p[i][j] = CC;
}
}
}
@@ -882,7 +843,7 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
}
}
void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, float chrom)
void ImProcFunctions::BadpixelsLab(LabImage * lab, double radius, int thresh, float chrom)
{
BENCHFUN
@@ -892,7 +853,7 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
const int halfwin = std::ceil(2 * radius) + 1;
const int width = src->W, height = src->H;
const int width = lab->W, height = lab->H;
constexpr float eps = 1.f;
@@ -907,7 +868,7 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
#endif
{
// blur L channel
gaussianBlur(src->L, tmL, width, height, radius / 2.0);//low value to avoid artifacts
gaussianBlur(lab->L, tmL, width, height, radius / 2.0);//low value to avoid artifacts
}
//luma badpixels
@@ -929,12 +890,12 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i = 0; i < height; i++) {
int j = 0;
for (; j < 2; j++) {
const float shfabs = std::fabs(src->L[i][j] - tmL[i][j]);
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += std::fabs(src->L[i1][j1] - tmL[i1][j1]);
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
}
}
badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
@@ -943,36 +904,36 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
const vfloat shfabsv = vabsf(LVFU(src->L[i][j]) - LVFU(tmL[i][j]));
const vfloat shfabsv = vabsf(LVFU(lab->L[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(src->L[i1][j1]) - LVFU(tmL[i1][j1]));
shmedv += vabsf(LVFU(lab->L[i1][j1]) - LVFU(tmL[i1][j1]));
}
}
STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev));
}
#endif
for (; j < width - 2; j++) {
const float shfabs = std::fabs(src->L[i][j] - tmL[i][j]);
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += std::fabs(src->L[i1][j1] - tmL[i1][j1]);
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
}
}
badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
}
for (; j < width; j++) {
const float shfabs = std::fabs(src->L[i][j] - tmL[i][j]);
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
shmed += std::fabs(src->L[i1][j1] - tmL[i1][j1]);
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
}
}
badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
@@ -993,18 +954,18 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) {
sum += src->L[i1][j1];
sum += lab->L[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * lab->L[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) {
src->L[i][j] = sum / tot;
lab->L[i][j] = sum / tot;
}
}
}
@@ -1016,18 +977,18 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) {
sum += src->L[i1][j1];
sum += lab->L[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * lab->L[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) {
src->L[i][j] = sum / tot;
lab->L[i][j] = sum / tot;
}
}
}
@@ -1039,18 +1000,18 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) {
if (!badpix[i1 * width + j1]) {
sum += src->L[i1][j1];
sum += lab->L[i1][j1];
tot += 1.f;
const float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * lab->L[i1][j1];
norm += dirsh;
}
}
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) {
src->L[i][j] = sum / tot;
lab->L[i][j] = sum / tot;
}
}
}
@@ -1067,8 +1028,8 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
#endif
{
// blur chroma a and b
gaussianBlur(src->a, tmaa, width, height, radius);
gaussianBlur(src->b, tmbb, width, height, radius);
gaussianBlur(lab->a, tmaa, width, height, radius);
gaussianBlur(lab->b, tmbb, width, height, radius);
}
// begin chroma badpixels
@@ -1080,7 +1041,7 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
const float chroma = SQR(src->a[i][j] - tmaa[i][j]) + SQR(src->b[i][j] - tmbb[i][j]);
const float chroma = SQR(lab->a[i][j] - tmaa[i][j]) + SQR(lab->b[i][j] - tmbb[i][j]);
chrommed += chroma;
badpix[i * width + j] = chroma;
}
@@ -1134,14 +1095,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
}
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}
@@ -1157,17 +1118,17 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const vfloat wtv = LVFU(badpix[i1 * width + j1]);
atotv += wtv * LVFU(src->a[i1][j1]);
btotv += wtv * LVFU(src->b[i1][j1]);
atotv += wtv * LVFU(lab->a[i1][j1]);
btotv += wtv * LVFU(lab->b[i1][j1]);
normv += wtv;
}
}
selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv)));
if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) {
const vfloat aOrig = LVFU(src->a[i][j]);
const vfloat bOrig = LVFU(src->b[i][j]);
STVFU(src->a[i][j], vself(selMask, atotv / normv, aOrig));
STVFU(src->b[i][j], vself(selMask, btotv / normv, bOrig));
const vfloat aOrig = LVFU(lab->a[i][j]);
const vfloat bOrig = LVFU(lab->b[i][j]);
STVFU(lab->a[i][j], vself(selMask, atotv / normv, aOrig));
STVFU(lab->b[i][j], vself(selMask, btotv / normv, bOrig));
}
}
}
@@ -1180,14 +1141,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
}
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}
@@ -1200,14 +1161,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
const float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
atot += wt * lab->a[i1][j1];
btot += wt * lab->b[i1][j1];
norm += wt;
}
}
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm;
src->b[i][j] = btot / norm;
lab->a[i][j] = atot / norm;
lab->b[i][j] = btot / norm;
}
}
}

View File

@@ -339,10 +339,10 @@ public:
void badpixcam (CieImage* ncie, double rad, int thr, int mode, float chrom, bool hotbad);
void badpixlab (LabImage* lab, double rad, int thr, float chrom);
void PF_correct_RT (LabImage * src, double radius, int thresh);
void PF_correct_RTcam (CieImage * src, double radius, int thresh);
void Badpixelscam (CieImage * src, double radius, int thresh, int mode, float chrom, bool hotbad);
void BadpixelsLab (LabImage * src, double radius, int thresh, float chrom);
void PF_correct_RT (LabImage * lab, double radius, int thresh);
void PF_correct_RTcam (CieImage * ncie, double radius, int thresh);
void Badpixelscam (CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad);
void BadpixelsLab (LabImage * lab, double radius, int thresh, float chrom);
void ToneMapFattal02(Imagefloat *rgb);
void localContrast(LabImage *lab);

View File

@@ -649,7 +649,7 @@ struct ColorAppearanceParams {
struct DefringeParams {
bool enabled;
double radius;
float threshold;
int threshold;
std::vector<double> huecurve;
DefringeParams();