Speedup for PF_correct_RTcam()

This commit is contained in:
heckflosse
2018-02-23 13:30:52 +01:00
parent 2729b785c3
commit cfbcd6cd5b
3 changed files with 165 additions and 204 deletions

View File

@@ -23,7 +23,6 @@
// along with this program. If not, see <http://www.gnu.org/licenses/>. // along with this program. If not, see <http://www.gnu.org/licenses/>.
// //
//////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#include "gauss.h" #include "gauss.h"
#include "improcfun.h" #include "improcfun.h"
@@ -39,18 +38,16 @@
namespace rtengine namespace rtengine
{ {
void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh) void ImProcFunctions::PF_correct_RT(LabImage * lab, double radius, int thresh)
{ {
BENCHFUN BENCHFUN
const int halfwin = std::ceil(2 * radius) + 1;
std::unique_ptr<FlatCurve> chCurve; std::unique_ptr<FlatCurve> chCurve;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
chCurve.reset(new FlatCurve(params->defringe.huecurve)); chCurve.reset(new FlatCurve(params->defringe.huecurve));
} }
// local variables // local variables
const int width = src->W, height = src->H; const int width = lab->W, height = lab->H;
//temporary array to store chromaticity //temporary array to store chromaticity
const std::unique_ptr<float[]> fringe(new float[width * height]); const std::unique_ptr<float[]> fringe(new float[width * height]);
@@ -58,23 +55,17 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
JaggedArray<float> tmpa(width, height); JaggedArray<float> tmpa(width, height);
JaggedArray<float> tmpb(width, height); JaggedArray<float> tmpb(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(src->a, tmpa, width, height, radius);
gaussianBlur(src->b, tmpb, width, height, radius);
}
double chromave = 0.0; // use double precision for large summations double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel #pragma omp parallel
#endif #endif
{ {
float chromaChfactor = 1.f; gaussianBlur(lab->a, tmpa, width, height, radius);
gaussianBlur(lab->b, tmpb, width, height, radius);
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp for reduction(+:chromave) #pragma omp for reduction(+:chromave) schedule(dynamic,16)
#endif #endif
for (int i = 0; i < height; i++) { for (int i = 0; i < height; i++) {
@@ -85,24 +76,25 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
int k = 0; int k = 0;
for (; k < width - 3; k += 4) { for (; k < width - 3; k += 4) {
STVFU(fringe[i * width + k], xatan2f(LVFU(src->b[i][k]), LVFU(src->a[i][k]))); STVFU(fringe[i * width + k], xatan2f(LVFU(lab->b[i][k]), LVFU(lab->a[i][k])));
} }
for (; k < width; k++) { for (; k < width; k++) {
fringe[i * width + k] = xatan2f(src->b[i][k], src->a[i][k]); fringe[i * width + k] = xatan2f(lab->b[i][k], lab->a[i][k]);
} }
} }
#endif #endif
for (int j = 0; j < width; j++) { for (int j = 0; j < width; j++) {
float chromaChfactor = 1.f;
if (chCurve) { if (chCurve) {
#ifdef __SSE2__ #ifdef __SSE2__
// use the precalculated atan values // use the precalculated atan values
const float HH = fringe[i * width + j]; const float HH = fringe[i * width + j];
#else #else
// no precalculated values without SSE => calculate // no precalculated values without SSE => calculate
const float HH = xatan2f(src->b[i][j], src->a[i][j]); const float HH = xatan2f(lab->b[i][j], lab->a[i][j]);
#endif #endif
float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; // get C=f(H) float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; // get C=f(H)
@@ -113,7 +105,7 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
chromaChfactor = SQR(1.f + chparam); chromaChfactor = SQR(1.f + chparam);
} }
const float chroma = chromaChfactor * (SQR(src->a[i][j] - tmpa[i][j]) + SQR(src->b[i][j] - tmpb[i][j])); // modulate chroma function hue const float chroma = chromaChfactor * (SQR(lab->a[i][j] - tmpa[i][j]) + SQR(lab->b[i][j] - tmpb[i][j])); // modulate chroma function hue
chromave += chroma; chromave += chroma;
fringe[i * width + j] = chroma; fringe[i * width + j] = chroma;
} }
@@ -133,9 +125,10 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
} }
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave); const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
const int halfwin = std::ceil(2 * radius) + 1;
// Issue 1674: // Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // often, CA is not evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16 // choice for the chunk_size than 16
@@ -156,13 +149,13 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
for (int j1 = 0; j1 < j + halfwin; j1++) { for (int j1 = 0; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance //neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1]; const float wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1]; atot += wt * lab->a[i1][j1];
btot += wt * src->b[i1][j1]; btot += wt * lab->b[i1][j1];
norm += wt; norm += wt;
} }
src->a[i][j] = atot / norm; lab->a[i][j] = atot / norm;
src->b[i][j] = btot / norm; lab->b[i][j] = btot / norm;
} }
} }
@@ -176,13 +169,13 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance //neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1]; const float wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1]; atot += wt * lab->a[i1][j1];
btot += wt * src->b[i1][j1]; btot += wt * lab->b[i1][j1];
norm += wt; norm += wt;
} }
src->a[i][j] = atot / norm; lab->a[i][j] = atot / norm;
src->b[i][j] = btot / norm; lab->b[i][j] = btot / norm;
} }
} }
@@ -196,23 +189,22 @@ void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh)
for (int j1 = j - halfwin + 1; j1 < width; j1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) {
//neighbourhood average of pixels weighted by chrominance //neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1]; const float wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1]; atot += wt * lab->a[i1][j1];
btot += wt * src->b[i1][j1]; btot += wt * lab->b[i1][j1];
norm += wt; norm += wt;
} }
src->a[i][j] = atot / norm; lab->a[i][j] = atot / norm;
src->b[i][j] = btot / norm; lab->b[i][j] = btot / norm;
} }
} }
}//end of ab channel averaging }//end of ab channel averaging
} }
} }
void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh) void ImProcFunctions::PF_correct_RTcam(CieImage * ncie, double radius, int thresh)
{ {
BENCHFUN BENCHFUN
const int halfwin = std::ceil(2 * radius) + 1;
std::unique_ptr<FlatCurve> chCurve; std::unique_ptr<FlatCurve> chCurve;
@@ -221,13 +213,13 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
} }
// local variables // local variables
const int width = src->W, height = src->H; const int width = ncie->W, height = ncie->H;
//temporary array to store chromaticity //temporary array to store chromaticity
const std::unique_ptr<float[]> fringe(new float[width * height]); const std::unique_ptr<float[]> fringe(new float[width * height]);
float** const sraa = src->h_p; // we use the src->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure float** const sraa = ncie->h_p; // we use the ncie->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure
float** const srbb = src->C_p; // we use the src->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure float** const srbb = ncie->C_p; // we use the ncie->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure
JaggedArray<float> tmaa(width, height); JaggedArray<float> tmaa(width, height);
JaggedArray<float> tmbb(width, height); JaggedArray<float> tmbb(width, height);
@@ -247,40 +239,37 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
#ifdef __SSE2__ #ifdef __SSE2__
for (; j < width - 3; j += 4) { for (; j < width - 3; j += 4) {
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(src->h_p[i][j])); const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
STVFU(sraa[i][j], LVFU(src->C_p[i][j]) * sincosvalv.y); STVFU(sraa[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.y);
STVFU(srbb[i][j], LVFU(src->C_p[i][j]) * sincosvalv.x); STVFU(srbb[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.x);
} }
#endif #endif
for (; j < width; j++) { for (; j < width; j++) {
const float2 sincosval = xsincosf(RT_PI_F_180 * src->h_p[i][j]); const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y; sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x; srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
} }
} }
} }
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel #pragma omp parallel
#endif #endif
{ {
gaussianBlur(sraa, tmaa, width, height, radius); gaussianBlur(sraa, tmaa, width, height, radius);
gaussianBlur(srbb, tmbb, width, height, radius); gaussianBlur(srbb, tmbb, width, height, radius);
}
float chromaChfactor = 1.f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__ #ifdef __SSE2__
// vectorized per row precalculation of the atan2 values
if (chCurve) { if (chCurve) {
// vectorized precalculation of the atan2 values
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
int j = 0; int j = 0;
for (; j < width - 3; j += 4) { for (; j < width - 3; j += 4) {
STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j]))); STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j])));
@@ -290,23 +279,8 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]); fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]);
} }
} }
}
}
#endif #endif
double chromave = 0.0; // use double precision for large summations
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) { for (int j = 0; j < width; j++) {
if (chCurve) { if (chCurve) {
#ifdef __SSE2__ #ifdef __SSE2__
@@ -345,6 +319,7 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
} }
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave); const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
const int halfwin = std::ceil(2 * radius) + 1;
// Issue 1674: // Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
@@ -352,6 +327,8 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16 // choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP #ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16) #pragma omp parallel for schedule(dynamic,16)
#endif #endif
@@ -359,13 +336,9 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
for (int i = 0; i < height; i++) { for (int i = 0; i < height; i++) {
int j = 0; int j = 0;
for (; j < halfwin - 1; j++) { for (; j < halfwin - 1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) { if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f; float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int j1 = 0; j1 < j + halfwin; j1++) { for (int j1 = 0; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance //neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1]; const float wt = fringe[i1 * width + j1];
@@ -373,22 +346,19 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
btot += wt * srbb[i1][j1]; btot += wt * srbb[i1][j1];
norm += wt; norm += wt;
} }
if (norm > 0.f) {
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} }
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
} }
} }
for (; j < width - halfwin + 1; j++) { for (; j < width - halfwin + 1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) { if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f; float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
//neighbourhood average of pixels weighted by chrominance //neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1]; const float wt = fringe[i1 * width + j1];
@@ -396,22 +366,19 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
btot += wt * srbb[i1][j1]; btot += wt * srbb[i1][j1];
norm += wt; norm += wt;
} }
if (norm > 0.f) {
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} }
} tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
}
} }
for (; j < width; j++) { for (; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) { if (fringe[i * width + j] < threshfactor) {
float atot = 0.f, btot = 0.f, norm = 0.f; float atot = 0.f, btot = 0.f, norm = 0.f;
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < width; j1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) {
//neighbourhood average of pixels weighted by chrominance //neighbourhood average of pixels weighted by chrominance
const float wt = fringe[i1 * width + j1]; const float wt = fringe[i1 * width + j1];
@@ -419,48 +386,42 @@ void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh
btot += wt * srbb[i1][j1]; btot += wt * srbb[i1][j1];
norm += wt; norm += wt;
} }
if (norm > 0.f) {
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} }
tmaa[i][j] = atot / norm;
tmbb[i][j] = btot / norm;
} else {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
} }
} }
} //end of ab channel averaging j = 0;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < height; i++) {
int j = 0;
#ifdef __SSE2__ #ifdef __SSE2__
for (; j < width - 3; j += 4) { for (; j < width - 3; j += 4) {
const vfloat interav = LVFU(tmaa[i][j]); const vfloat interav = LVFU(tmaa[i][j]);
const vfloat interbv = LVFU(tmbb[i][j]); const vfloat interbv = LVFU(tmbb[i][j]);
STVFU(src->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180)); STVFU(ncie->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180));
STVFU(src->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav))); STVFU(ncie->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav)));
} }
#endif #endif
for (; j < width; j++) { for (; j < width; j++) {
const float intera = tmaa[i][j]; const float intera = tmaa[i][j];
const float interb = tmbb[i][j]; const float interb = tmbb[i][j];
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
} }
} } //end of ab channel averaging
} }
} }
void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, int mode, float chrom, bool hotbad) void ImProcFunctions::Badpixelscam(CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad)
{ {
BENCHFUN BENCHFUN
if (mode == 2 && radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here if (mode == 2 && radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
return; return;
} }
const int width = src->W, height = src->H; const int width = ncie->W, height = ncie->H;
constexpr float eps = 1.f; constexpr float eps = 1.f;
@@ -474,7 +435,7 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
#endif #endif
{ {
//luma sh_p //luma sh_p
gaussianBlur(src->sh_p, tmL, width, height, radius / 2.0);//low value to avoid artifacts gaussianBlur(ncie->sh_p, tmL, width, height, radius / 2.0);//low value to avoid artifacts
} }
//luma badpixels //luma badpixels
@@ -496,12 +457,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i = 0; i < height; i++) { for (int i = 0; i < height; i++) {
int j = 0; int j = 0;
for (; j < 2; j++) { for (; j < 2; j++) {
const float shfabs = std::fabs(src->sh_p[i][j] - tmL[i][j]); const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f; float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) { for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += std::fabs(src->sh_p[i1][j1] - tmL[i1][j1]); shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
} }
} }
@@ -511,12 +472,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
#ifdef __SSE2__ #ifdef __SSE2__
for (; j < width - 5; j += 4) { for (; j < width - 5; j += 4) {
const vfloat shfabsv = vabsf(LVFU(src->sh_p[i][j]) - LVFU(tmL[i][j])); const vfloat shfabsv = vabsf(LVFU(ncie->sh_p[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV; vfloat shmedv = ZEROV;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(src->sh_p[i1][j1]) - LVFU(tmL[i1][j1])); shmedv += vabsf(LVFU(ncie->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
} }
} }
@@ -524,12 +485,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
} }
#endif #endif
for (; j < width - 2; j++) { for (; j < width - 2; j++) {
const float shfabs = std::fabs(src->sh_p[i][j] - tmL[i][j]); const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f; float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += std::fabs(src->sh_p[i1][j1] - tmL[i1][j1]); shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
} }
} }
@@ -537,12 +498,12 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
} }
for (; j < width; j++) { for (; j < width; j++) {
const float shfabs = std::fabs(src->sh_p[i][j] - tmL[i][j]); const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
float shmed = 0.f; float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) { for (int j1 = j - 2; j1 < width; j1++) {
shmed += std::fabs(src->sh_p[i1][j1] - tmL[i1][j1]); shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
} }
} }
@@ -564,18 +525,18 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) { for (int j1 = 0; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) { if (!badpix[i1 * width + j1]) {
sum += src->sh_p[i1][j1]; sum += ncie->sh_p[i1][j1];
tot += 1.f; tot += 1.f;
const float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1]; shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh; norm += dirsh;
} }
} }
} }
if (norm > 0.f) { if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm; ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) { } else if (tot > 0.f) {
src->sh_p[i][j] = sum / tot; ncie->sh_p[i][j] = sum / tot;
} }
} }
} }
@@ -587,18 +548,18 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) { if (!badpix[i1 * width + j1]) {
sum += src->sh_p[i1][j1]; sum += ncie->sh_p[i1][j1];
tot += 1.f; tot += 1.f;
const float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1]; shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh; norm += dirsh;
} }
} }
} }
if (norm > 0.f) { if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm; ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) { } else if (tot > 0.f) {
src->sh_p[i][j] = sum / tot; ncie->sh_p[i][j] = sum / tot;
} }
} }
} }
@@ -610,18 +571,18 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) { for (int j1 = j - 2; j1 < width; j1++) {
if (!badpix[i1 * width + j1]) { if (!badpix[i1 * width + j1]) {
sum += src->sh_p[i1][j1]; sum += ncie->sh_p[i1][j1];
tot += 1.f; tot += 1.f;
const float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1]; shsum += dirsh * ncie->sh_p[i1][j1];
norm += dirsh; norm += dirsh;
} }
} }
} }
if (norm > 0.f) { if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm; ncie->sh_p[i][j] = shsum / norm;
} else if (tot > 0.f) { } else if (tot > 0.f) {
src->sh_p[i][j] = sum / tot; ncie->sh_p[i][j] = sum / tot;
} }
} }
} }
@@ -651,15 +612,15 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
#ifdef __SSE2__ #ifdef __SSE2__
for (; j < width - 3; j += 4) { for (; j < width - 3; j += 4) {
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(src->h_p[i][j])); const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
STVFU(sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y); STVFU(sraa[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.y);
STVFU(srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x); STVFU(srbb[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.x);
} }
#endif #endif
for (; j < width; j++) { for (; j < width; j++) {
const float2 sincosval = xsincosf(RT_PI_F_180 * src->h_p[i][j]); const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y; sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x; srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
} }
} }
} }
@@ -786,8 +747,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const float CC = sqrt(SQR(interb) + SQR(intera)); const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) { if (CC < chrom) {
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = CC; ncie->C_p[i][j] = CC;
} }
} }
} }
@@ -819,8 +780,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
selMask = vandm(selMask, vmaskf_lt(CCv, chromv)); selMask = vandm(selMask, vmaskf_lt(CCv, chromv));
if (_mm_movemask_ps((vfloat)selMask)) { if (_mm_movemask_ps((vfloat)selMask)) {
STVFU(src->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(src->h_p[i][j]))); STVFU(ncie->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(ncie->h_p[i][j])));
STVFU(src->C_p[i][j], vself(selMask, CCv, LVFU(src->C_p[i][j]))); STVFU(ncie->C_p[i][j], vself(selMask, CCv, LVFU(ncie->C_p[i][j])));
} }
} }
} }
@@ -845,8 +806,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const float CC = sqrt(SQR(interb) + SQR(intera)); const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) { if (CC < chrom) {
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = CC; ncie->C_p[i][j] = CC;
} }
} }
} }
@@ -871,8 +832,8 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
const float CC = sqrt(SQR(interb) + SQR(intera)); const float CC = sqrt(SQR(interb) + SQR(intera));
if (CC < chrom) { if (CC < chrom) {
src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
src->C_p[i][j] = CC; ncie->C_p[i][j] = CC;
} }
} }
} }
@@ -882,7 +843,7 @@ void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, in
} }
} }
void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, float chrom) void ImProcFunctions::BadpixelsLab(LabImage * lab, double radius, int thresh, float chrom)
{ {
BENCHFUN BENCHFUN
@@ -892,7 +853,7 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
const int halfwin = std::ceil(2 * radius) + 1; const int halfwin = std::ceil(2 * radius) + 1;
const int width = src->W, height = src->H; const int width = lab->W, height = lab->H;
constexpr float eps = 1.f; constexpr float eps = 1.f;
@@ -907,7 +868,7 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
#endif #endif
{ {
// blur L channel // blur L channel
gaussianBlur(src->L, tmL, width, height, radius / 2.0);//low value to avoid artifacts gaussianBlur(lab->L, tmL, width, height, radius / 2.0);//low value to avoid artifacts
} }
//luma badpixels //luma badpixels
@@ -929,12 +890,12 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i = 0; i < height; i++) { for (int i = 0; i < height; i++) {
int j = 0; int j = 0;
for (; j < 2; j++) { for (; j < 2; j++) {
const float shfabs = std::fabs(src->L[i][j] - tmL[i][j]); const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f; float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) { for (int j1 = 0; j1 <= j + 2; j1++) {
shmed += std::fabs(src->L[i1][j1] - tmL[i1][j1]); shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
} }
} }
badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr); badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
@@ -943,36 +904,36 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
#ifdef __SSE2__ #ifdef __SSE2__
for (; j < width - 5; j += 4) { for (; j < width - 5; j += 4) {
const vfloat shfabsv = vabsf(LVFU(src->L[i][j]) - LVFU(tmL[i][j])); const vfloat shfabsv = vabsf(LVFU(lab->L[i][j]) - LVFU(tmL[i][j]));
vfloat shmedv = ZEROV; vfloat shmedv = ZEROV;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmedv += vabsf(LVFU(src->L[i1][j1]) - LVFU(tmL[i1][j1])); shmedv += vabsf(LVFU(lab->L[i1][j1]) - LVFU(tmL[i1][j1]));
} }
} }
STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev)); STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev));
} }
#endif #endif
for (; j < width - 2; j++) { for (; j < width - 2; j++) {
const float shfabs = std::fabs(src->L[i][j] - tmL[i][j]); const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f; float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) {
shmed += std::fabs(src->L[i1][j1] - tmL[i1][j1]); shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
} }
} }
badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr); badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
} }
for (; j < width; j++) { for (; j < width; j++) {
const float shfabs = std::fabs(src->L[i][j] - tmL[i][j]); const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
float shmed = 0.f; float shmed = 0.f;
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) { for (int j1 = j - 2; j1 < width; j1++) {
shmed += std::fabs(src->L[i1][j1] - tmL[i1][j1]); shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
} }
} }
badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr); badpix[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
@@ -993,18 +954,18 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = 0; j1 <= j + 2; j1++) { for (int j1 = 0; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) { if (!badpix[i1 * width + j1]) {
sum += src->L[i1][j1]; sum += lab->L[i1][j1];
tot += 1.f; tot += 1.f;
const float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1]; shsum += dirsh * lab->L[i1][j1];
norm += dirsh; norm += dirsh;
} }
} }
} }
if (norm > 0.f) { if (norm > 0.f) {
src->L[i][j] = shsum / norm; lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) { } else if (tot > 0.f) {
src->L[i][j] = sum / tot; lab->L[i][j] = sum / tot;
} }
} }
} }
@@ -1016,18 +977,18 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 <= j + 2; j1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) {
if (!badpix[i1 * width + j1]) { if (!badpix[i1 * width + j1]) {
sum += src->L[i1][j1]; sum += lab->L[i1][j1];
tot += 1.f; tot += 1.f;
const float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1]; shsum += dirsh * lab->L[i1][j1];
norm += dirsh; norm += dirsh;
} }
} }
} }
if (norm > 0.f) { if (norm > 0.f) {
src->L[i][j] = shsum / norm; lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) { } else if (tot > 0.f) {
src->L[i][j] = sum / tot; lab->L[i][j] = sum / tot;
} }
} }
} }
@@ -1039,18 +1000,18 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
for (int j1 = j - 2; j1 < width; j1++) { for (int j1 = j - 2; j1 < width; j1++) {
if (!badpix[i1 * width + j1]) { if (!badpix[i1 * width + j1]) {
sum += src->L[i1][j1]; sum += lab->L[i1][j1];
tot += 1.f; tot += 1.f;
const float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1]; shsum += dirsh * lab->L[i1][j1];
norm += dirsh; norm += dirsh;
} }
} }
} }
if (norm > 0.f) { if (norm > 0.f) {
src->L[i][j] = shsum / norm; lab->L[i][j] = shsum / norm;
} else if (tot > 0.f) { } else if (tot > 0.f) {
src->L[i][j] = sum / tot; lab->L[i][j] = sum / tot;
} }
} }
} }
@@ -1067,8 +1028,8 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
#endif #endif
{ {
// blur chroma a and b // blur chroma a and b
gaussianBlur(src->a, tmaa, width, height, radius); gaussianBlur(lab->a, tmaa, width, height, radius);
gaussianBlur(src->b, tmbb, width, height, radius); gaussianBlur(lab->b, tmbb, width, height, radius);
} }
// begin chroma badpixels // begin chroma badpixels
@@ -1080,7 +1041,7 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i = 0; i < height; i++) { for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) { for (int j = 0; j < width; j++) {
const float chroma = SQR(src->a[i][j] - tmaa[i][j]) + SQR(src->b[i][j] - tmbb[i][j]); const float chroma = SQR(lab->a[i][j] - tmaa[i][j]) + SQR(lab->b[i][j] - tmbb[i][j]);
chrommed += chroma; chrommed += chroma;
badpix[i * width + j] = chroma; badpix[i * width + j] = chroma;
} }
@@ -1134,14 +1095,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = 0; j1 < j + halfwin; j1++) { for (int j1 = 0; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1]; const float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1]; atot += wt * lab->a[i1][j1];
btot += wt * src->b[i1][j1]; btot += wt * lab->b[i1][j1];
norm += wt; norm += wt;
} }
} }
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) { if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm; lab->a[i][j] = atot / norm;
src->b[i][j] = btot / norm; lab->b[i][j] = btot / norm;
} }
} }
} }
@@ -1157,17 +1118,17 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const vfloat wtv = LVFU(badpix[i1 * width + j1]); const vfloat wtv = LVFU(badpix[i1 * width + j1]);
atotv += wtv * LVFU(src->a[i1][j1]); atotv += wtv * LVFU(lab->a[i1][j1]);
btotv += wtv * LVFU(src->b[i1][j1]); btotv += wtv * LVFU(lab->b[i1][j1]);
normv += wtv; normv += wtv;
} }
} }
selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv))); selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv)));
if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) { if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) {
const vfloat aOrig = LVFU(src->a[i][j]); const vfloat aOrig = LVFU(lab->a[i][j]);
const vfloat bOrig = LVFU(src->b[i][j]); const vfloat bOrig = LVFU(lab->b[i][j]);
STVFU(src->a[i][j], vself(selMask, atotv / normv, aOrig)); STVFU(lab->a[i][j], vself(selMask, atotv / normv, aOrig));
STVFU(src->b[i][j], vself(selMask, btotv / normv, bOrig)); STVFU(lab->b[i][j], vself(selMask, btotv / normv, bOrig));
} }
} }
} }
@@ -1180,14 +1141,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
const float wt = badpix[i1 * width + j1]; const float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1]; atot += wt * lab->a[i1][j1];
btot += wt * src->b[i1][j1]; btot += wt * lab->b[i1][j1];
norm += wt; norm += wt;
} }
} }
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) { if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm; lab->a[i][j] = atot / norm;
src->b[i][j] = btot / norm; lab->b[i][j] = btot / norm;
} }
} }
} }
@@ -1200,14 +1161,14 @@ void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, fl
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
for (int j1 = j - halfwin + 1; j1 < width; j1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) {
const float wt = badpix[i1 * width + j1]; const float wt = badpix[i1 * width + j1];
atot += wt * src->a[i1][j1]; atot += wt * lab->a[i1][j1];
btot += wt * src->b[i1][j1]; btot += wt * lab->b[i1][j1];
norm += wt; norm += wt;
} }
} }
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) { if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
src->a[i][j] = atot / norm; lab->a[i][j] = atot / norm;
src->b[i][j] = btot / norm; lab->b[i][j] = btot / norm;
} }
} }
} }

View File

@@ -339,10 +339,10 @@ public:
void badpixcam (CieImage* ncie, double rad, int thr, int mode, float chrom, bool hotbad); void badpixcam (CieImage* ncie, double rad, int thr, int mode, float chrom, bool hotbad);
void badpixlab (LabImage* lab, double rad, int thr, float chrom); void badpixlab (LabImage* lab, double rad, int thr, float chrom);
void PF_correct_RT (LabImage * src, double radius, int thresh); void PF_correct_RT (LabImage * lab, double radius, int thresh);
void PF_correct_RTcam (CieImage * src, double radius, int thresh); void PF_correct_RTcam (CieImage * ncie, double radius, int thresh);
void Badpixelscam (CieImage * src, double radius, int thresh, int mode, float chrom, bool hotbad); void Badpixelscam (CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad);
void BadpixelsLab (LabImage * src, double radius, int thresh, float chrom); void BadpixelsLab (LabImage * lab, double radius, int thresh, float chrom);
void ToneMapFattal02(Imagefloat *rgb); void ToneMapFattal02(Imagefloat *rgb);
void localContrast(LabImage *lab); void localContrast(LabImage *lab);

View File

@@ -649,7 +649,7 @@ struct ColorAppearanceParams {
struct DefringeParams { struct DefringeParams {
bool enabled; bool enabled;
double radius; double radius;
float threshold; int threshold;
std::vector<double> huecurve; std::vector<double> huecurve;
DefringeParams(); DefringeParams();