New SSE interpolating routine for LUT<float>.
This commit is contained in:
@@ -95,6 +95,8 @@ protected:
|
||||
// list of variables ordered to improve cache speed
|
||||
unsigned int maxs;
|
||||
float maxsf;
|
||||
// possibly-more-correct value for sse routine (see unit test for details)
|
||||
float maxIndexFloat;
|
||||
T * data;
|
||||
unsigned int clip;
|
||||
unsigned int size;
|
||||
@@ -129,6 +131,7 @@ public:
|
||||
upperBound = size - 1;
|
||||
maxs = size - 2;
|
||||
maxsf = (float)maxs;
|
||||
maxIndexFloat = ((float)upperBound) - 1e-5;
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
maxsv = F2V( maxs );
|
||||
sizeiv = _mm_set1_epi32( (int)(size - 1) );
|
||||
@@ -158,6 +161,7 @@ public:
|
||||
upperBound = size - 1;
|
||||
maxs = size - 2;
|
||||
maxsf = (float)maxs;
|
||||
maxIndexFloat = ((float)upperBound) - 1e-5;
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
maxsv = F2V( maxs );
|
||||
sizeiv = _mm_set1_epi32( (int)(size - 1) );
|
||||
@@ -228,6 +232,7 @@ public:
|
||||
this->upperBound = rhs.upperBound;
|
||||
this->maxs = this->size - 2;
|
||||
this->maxsf = (float)this->maxs;
|
||||
this->maxIndexFloat = ((float)this->upperBound) - 1e-5;
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
this->maxsv = F2V( this->size - 2);
|
||||
this->sizeiv = _mm_set1_epi32( (int)(this->size - 1) );
|
||||
@@ -293,72 +298,37 @@ public:
|
||||
}
|
||||
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
/*
|
||||
vfloat operator[](vfloat indexv ) const
|
||||
vfloat operator[](vfloat indexv) const
|
||||
{
|
||||
// printf("don't use this operator. It's not ready for production");
|
||||
return _mm_setzero_ps();
|
||||
static_assert(std::is_same<T, float>::value, "This method only works for float LUTs");
|
||||
|
||||
// convert floats to ints
|
||||
vint idxv = _mm_cvttps_epi32( indexv );
|
||||
vfloat tempv, resultv, p1v, p2v;
|
||||
vmask maxmask = vmaskf_gt(indexv, maxsv);
|
||||
idxv = _mm_castps_si128(vself(maxmask, maxsv, _mm_castsi128_ps(idxv)));
|
||||
vmask minmask = vmaskf_lt(indexv, _mm_setzero_ps());
|
||||
idxv = _mm_castps_si128(vself(minmask, _mm_setzero_ps(), _mm_castsi128_ps(idxv)));
|
||||
// access the LUT 4 times and shuffle the values into p1v and p2v
|
||||
// Clamp and convert to integer values. Extract out of SSE register because all
|
||||
// lookup operations use regular addresses.
|
||||
vfloat clampedIndexes = _mm_max_ps(
|
||||
_mm_setzero_ps(),
|
||||
_mm_min_ps(_mm_set1_ps(maxIndexFloat), indexv));
|
||||
vint indexes = _mm_cvttps_epi32(clampedIndexes);
|
||||
int indexArray[4];
|
||||
_mm_storeu_si128(reinterpret_cast<__m128i*>(&indexArray[0]), indexes);
|
||||
|
||||
int idx;
|
||||
// Load data from the table. This reads more than necessary, but there don't seem
|
||||
// to exist more granular operations (though we could try non-SSE).
|
||||
// Cast to int for convenience in the next operation (partial transpose).
|
||||
vint values[4];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
values[i] = _mm_castps_si128(LVFU(data[indexArray[i]]));
|
||||
}
|
||||
|
||||
// get 4th value
|
||||
idx = _mm_cvtsi128_si32 (_mm_shuffle_epi32(idxv, _MM_SHUFFLE(3, 3, 3, 3)));
|
||||
tempv = LVFU(data[idx]);
|
||||
p1v = _mm_shuffle_ps(tempv, tempv, _MM_SHUFFLE(0, 0, 0, 0));
|
||||
p2v = _mm_shuffle_ps(tempv, tempv, _MM_SHUFFLE(1, 1, 1, 1));
|
||||
// now p1v is 3 3 3 3
|
||||
// p2v is 3 3 3 3
|
||||
// Partial 4x4 transpose operation. We want two new vectors, the first consisting
|
||||
// of [values[0][0] ... values[3][0]] and the second [values[0][1] ... values[3][1]].
|
||||
__m128i temp0 = _mm_unpacklo_epi32(values[0], values[1]);
|
||||
__m128i temp1 = _mm_unpacklo_epi32(values[2], values[3]);
|
||||
vfloat lower = _mm_castsi128_ps(_mm_unpacklo_epi64(temp0, temp1));
|
||||
vfloat upper = _mm_castsi128_ps(_mm_unpackhi_epi64(temp0, temp1));
|
||||
|
||||
// get 3rd value
|
||||
idx = _mm_cvtsi128_si32 (_mm_shuffle_epi32(idxv, _MM_SHUFFLE(2, 2, 2, 2)));
|
||||
tempv = LVFU(data[idx]);
|
||||
p1v = _mm_move_ss( p1v, tempv);
|
||||
tempv = _mm_shuffle_ps(tempv, tempv, _MM_SHUFFLE(1, 1, 1, 1));
|
||||
p2v = _mm_move_ss( p2v, tempv);
|
||||
// now p1v is 3 3 3 2
|
||||
// p2v is 3 3 3 2
|
||||
|
||||
// get 2nd value
|
||||
idx = _mm_cvtsi128_si32 (_mm_shuffle_epi32(idxv, _MM_SHUFFLE(1, 1, 1, 1)));
|
||||
tempv = LVFU(data[idx]);
|
||||
p1v = _mm_shuffle_ps( p1v, p1v, _MM_SHUFFLE(1, 0, 1, 0));
|
||||
p2v = _mm_shuffle_ps( p2v, p2v, _MM_SHUFFLE(1, 0, 1, 0));
|
||||
// now p1v is 3 2 3 2
|
||||
// now p2v is 3 2 3 2
|
||||
p1v = _mm_move_ss( p1v, tempv );
|
||||
// now p1v is 3 2 3 1
|
||||
tempv = _mm_shuffle_ps(tempv, tempv, _MM_SHUFFLE(1, 1, 1, 1));
|
||||
p2v = _mm_move_ss( p2v, tempv);
|
||||
// now p1v is 3 2 3 1
|
||||
|
||||
// get 1st value
|
||||
idx = _mm_cvtsi128_si32 (_mm_shuffle_epi32(idxv, _MM_SHUFFLE(0, 0, 0, 0)));
|
||||
tempv = LVFU(data[idx]);
|
||||
p1v = _mm_shuffle_ps( p1v, p1v, _MM_SHUFFLE(3, 2, 0, 0));
|
||||
// now p1v is 3 2 1 1
|
||||
p2v = _mm_shuffle_ps( p2v, p2v, _MM_SHUFFLE(3, 2, 0, 0));
|
||||
// now p2v is 3 2 1 1
|
||||
p1v = _mm_move_ss( p1v, tempv );
|
||||
// now p1v is 3 2 1 0
|
||||
tempv = _mm_shuffle_ps(tempv, tempv, _MM_SHUFFLE(1, 1, 1, 1));
|
||||
p2v = _mm_move_ss( p2v, tempv);
|
||||
// now p2v is 3 2 1 0
|
||||
|
||||
vfloat diffv = indexv - _mm_cvtepi32_ps ( idxv );
|
||||
diffv = vself(vorm(maxmask, minmask), _mm_setzero_ps(), diffv);
|
||||
resultv = p1v + p2v * diffv;
|
||||
return resultv ;
|
||||
vfloat diff = clampedIndexes - _mm_cvtepi32_ps(indexes);
|
||||
return (_mm_set1_ps(1.0f) - diff) * lower + (diff * upper);
|
||||
}
|
||||
*/
|
||||
#ifdef __SSE4_1__
|
||||
template<typename U = T, typename = typename std::enable_if<std::is_same<U, float>::value>::type>
|
||||
vfloat operator[](vint idxv ) const
|
||||
@@ -456,6 +426,8 @@ public:
|
||||
}
|
||||
|
||||
idx = 0;
|
||||
// Note: Maybe this should be 'idx > maxsf'? See unit test where a LUT with
|
||||
// values [10, 11, 12, 13] gets looked up at 2.5 and returns 12.5.
|
||||
} else if (index > maxsf) {
|
||||
if (clip & LUT_CLIP_ABOVE) {
|
||||
return data[upperBound];
|
||||
@@ -543,6 +515,7 @@ public:
|
||||
maxs = 0;
|
||||
maxsf = 0.f;
|
||||
clip = 0;
|
||||
maxIndexFloat = ((float)upperBound) - 1e-5;
|
||||
}
|
||||
|
||||
// create an identity LUT (LUT(x) = x) or a scaled identity LUT (LUT(x) = x / divisor)
|
||||
@@ -652,6 +625,7 @@ public:
|
||||
upperBound = size - 1;
|
||||
maxs = size - 2;
|
||||
maxsf = (float)maxs;
|
||||
maxIndexFloat = ((float)upperBound) - 1e-5;
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
maxsv = F2V( size - 2);
|
||||
sizeiv = _mm_set1_epi32( (int)(size - 1) );
|
||||
|
@@ -881,6 +881,7 @@ inline void StandardToneCurve::Apply (float& r, float& g, float& b) const
|
||||
g = lutToneCurve[g];
|
||||
b = lutToneCurve[b];
|
||||
}
|
||||
|
||||
inline void StandardToneCurve::BatchApply(
|
||||
const size_t start, const size_t end,
|
||||
float *r, float *g, float *b) const {
|
||||
@@ -911,9 +912,9 @@ inline void StandardToneCurve::BatchApply(
|
||||
|
||||
#if defined( __SSE2__ ) && defined( __x86_64__ )
|
||||
for (; i + 3 < end; i += 4) {
|
||||
__m128i r_val = _mm_cvtps_epi32(LVF(r[i]));
|
||||
__m128i g_val = _mm_cvtps_epi32(LVF(g[i]));
|
||||
__m128i b_val = _mm_cvtps_epi32(LVF(b[i]));
|
||||
__m128 r_val = LVF(r[i]);
|
||||
__m128 g_val = LVF(g[i]);
|
||||
__m128 b_val = LVF(b[i]);
|
||||
STVF(r[i], lutToneCurve[r_val]);
|
||||
STVF(g[i], lutToneCurve[g_val]);
|
||||
STVF(b[i], lutToneCurve[b_val]);
|
||||
|
Reference in New Issue
Block a user