Hombre 56dafcf8c1 Spot Removal tool
It is not working yet, but the GUI is (almost) done.
See issue #2239.
2016-04-23 00:46:01 +02:00

371 lines
16 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "improcfun.h"
#include "alpha.h"
namespace rtengine
{
/* Code taken from Gimp 2.8.10 and converted for RawTherapee by Jean-Christophe FRISCH (aka Hombre) on 02.19.2014
*
* ORIGINAL NOTES
*
* The method used here is similar to the lighting invariant correction
* method but slightly different: we do not divide the RGB components,
* but substract them I2 = I0 - I1, where I0 is the sample image to be
* corrected, I1 is the reference pattern. Then we solve DeltaI=0
* (Laplace) with I2 Dirichlet conditions at the borders of the
* mask. The solver is a unoptimized red/black checker Gauss-Siedel
* with an over-relaxation factor of 1.8. It can benefit from a
* multi-grid evaluation of an initial solution before the main
* iteration loop.
*
* I reduced the convergence criteria to 0.1% (0.001) as we are
* dealing here with RGB integer components, more is overkill.
*
* Jean-Yves Couleaud cjyves@free.fr
*/
/* Original Algorithm Design:
*
* T. Georgiev, "Photoshop Healing Brush: a Tool for Seamless Cloning
* http://www.tgeorgiev.net/Photoshop_Healing.pdf
*/
void ImProcFunctions::removeSpots (Imagefloat* img, const std::vector<SpotEntry> &entries, const PreviewProps &pp)
{
Alpha mask;
//printf("img(%04d, %04d)\n", img->width, img->height);
for (const auto entry : entries) {
float srcX = float (entry.sourcePos.x);
float srcY = float (entry.sourcePos.y);
float dstX = float (entry.targetPos.x);
float dstY = float (entry.targetPos.y);
//float radius = float (entry.radius) + 0.5f;
float featherRadius = entry.radius * (1.f + entry.feather);
int scaledFeatherRadius = featherRadius / pp.skip;
int src_XMin = int ((srcX - featherRadius - pp.x) / float (pp.skip) + 0.5f);
int src_XMax = int ((srcX + featherRadius - pp.x) / float (pp.skip) + 0.5f);
int src_YMin = int ((srcY - featherRadius - pp.y) / float (pp.skip) + 0.5f);
int src_YMax = int ((srcY + featherRadius - pp.y) / float (pp.skip) + 0.5f);
int dst_XMin = int ((dstX - featherRadius - pp.x) / float (pp.skip) + 0.5f);
int dst_XMax = int ((dstX + featherRadius - pp.x) / float (pp.skip) + 0.5f);
int dst_YMin = int ((dstY - featherRadius - pp.y) / float (pp.skip) + 0.5f);
int dst_YMax = int ((dstY + featherRadius - pp.y) / float (pp.skip) + 0.5f);
//printf(" -> X: %04d > %04d\n -> Y: %04d > %04d\n", dst_XMin, dst_XMax, dst_YMin, dst_YMax);
// scaled spot is too small, we do not preview it
if (scaledFeatherRadius < 2 && pp.skip != 1) {
#ifndef NDEBUG
if (options.rtSettings.verbose) {
printf ("Skipping spot located at %d x %d, too small for the preview zoom rate\n", entry.sourcePos.x, entry.sourcePos.y);
}
#endif
continue;
}
// skipping entries totally transparent
if (entry.opacity == 0.) {
#ifndef NDEBUG
if (options.rtSettings.verbose) {
printf ("Skipping spot located at %d x %d: opacity=%.3f\n", entry.sourcePos.x, entry.sourcePos.y, entry.opacity);
}
continue;
#endif
}
// skipping entries where the source circle isn't completely inside the image bounds
if (src_XMin < 0 || src_XMax >= img->width || src_YMin < 0 || src_YMax >= img->height) {
#ifndef NDEBUG
if (options.rtSettings.verbose) {
printf ("Skipping spot located at %d x %d, from the data at %d x %d, radius=%d, feather=%.3f, opacity=%.3f: source out of bounds\n", entry.sourcePos.x, entry.sourcePos.y, entry.targetPos.x, entry.targetPos.y, entry.radius, entry.feather, entry.opacity);
printf ("%d < 0 || %d >= %d || %d < 0 || %d >= %d\n",
src_XMin, src_XMax, img->width, src_YMin, src_YMax, img->height);
}
#endif
continue;
}
// skipping entries where the dest circle is completely outside the image bounds
if (dst_XMin >= img->width || dst_XMax <= 0 || dst_YMin >= img->height || dst_YMax <= 0) {
#ifndef NDEBUG
if (options.rtSettings.verbose) {
printf ("Skipping spot located at %d x %d, from the data at %d x %d, radius=%d, feather=%.3f, opacity=%.3f: source out of bounds\n", entry.sourcePos.x, entry.sourcePos.y, entry.targetPos.x, entry.targetPos.y, entry.radius, entry.feather, entry.opacity);
printf ("%d >= %d || %d <= 0 || %d >= %d || %d <= 0\n",
dst_XMin, img->width, dst_XMax, dst_YMin, img->height, dst_YMax);
}
#endif
continue;
}
// ----------------- Core function -----------------
#if 0
int scaledPPX = pp.x / pp.skip;
int scaledPPY = pp.y / pp.skip;
int scaledPPW = pp.w / pp.skip + (pp.w % pp.skip > 0);
int scaledPPH = pp.h / pp.skip + (pp.h % pp.skip > 0);
int sizeX = dst_XMax - dst_XMin + 1;
int sizeY = dst_YMax - dst_YMin + 1;
Imagefloat matrix (sizeX, sizeY);
Imagefloat solution (sizeX, sizeY);
// allocate the mask and draw it
mask.setSize (sizeX, sizeY);
{
Cairo::RefPtr<Cairo::Context> cr = Cairo::Context::create (mask.getSurface());
// clear the bitmap
cr->set_source_rgba (0., 0., 0., 0.);
cr->rectangle (0., 0., sizeX, sizeY);
cr->set_line_width (0.);
cr->fill();
// draw the mask
cr->set_antialias (Cairo::ANTIALIAS_GRAY);
cr->set_line_width (featherRadius);
double gradientCenterX = double (sizeX) / 2.;
double gradientCenterY = double (sizeY) / 2.;
{
Cairo::RefPtr<Cairo::RadialGradient> radialGradient = Cairo::RadialGradient::create (
gradientCenterX, gradientCenterY, radius,
gradientCenterX, gradientCenterY, featherRadius
);
radialGradient->add_color_stop_rgb (0., 0., 0., 1.);
radialGradient->add_color_stop_rgb (1., 0., 0., 0.);
cr->set_source_rgba (0., 0., 0., 1.);
cr->mask (radialGradient);
cr->rectangle (0., 0., sizeX, sizeY);
cr->fill();
}
}
// copy the src part to a temporary buffer to avoid possible self modified source
Imagefloat *srcBuff = img->copySubRegion (srcX, srcY, sizeX, sizeY);
// subtract pattern to image and store the result as a double in matrix
for (int i = 0, i2 = dst_YMin; i2 < sizeY - 1; ++i, ++i2) {
for (int j = 0, j2 = dst_XMin; i2 < sizeX - 1; ++j, ++j2) {
matrix.r (i, j) = img->r (i2, j2) - srcBuff->r (i, j);
matrix.g (i, j) = img->g (i2, j2) - srcBuff->g (i, j);
matrix.b (i, j) = img->b (i2, j2) - srcBuff->b (i, j);
}
}
// FIXME: is a faster implementation needed?
#define EPSILON 0.001
#define MAX_ITER 500
// repeat until convergence or max iterations
for (int n = 0; n < MAX_ITER; ++n) {
printf ("<<< n=#%d\n", n);
// ----------------------------------------------------------------
/* Perform one iteration of the Laplace solver for matrix. Store the
* result in solution and get the square of the cumulative error
* of the solution.
*/
int i, j;
double tmp, diff;
double sqr_err_r = 0.0;
double sqr_err_g = 0.0;
double sqr_err_b = 0.0;
const double w = 1.80 * 0.25; /* Over-relaxation = 1.8 */
// we use a red/black checker model of the discretization grid
// do reds
for (i = 0; i < matrix.getHeight(); ++i) {
for (j = i % 2; j < matrix.getWidth(); j += 2) {
printf ("/%d,%d", j, i);
if ((0 == mask (i, j)) || (i == 0) || (i == (matrix.getHeight() - 1)) || (j == 0) || (j == (matrix.getWidth() - 1))) {
// do nothing at the boundary or outside mask
solution.r (i, j) = matrix.r (i, j);
solution.g (i, j) = matrix.g (i, j);
solution.b (i, j) = matrix.b (i, j);
} else {
// Use Gauss Siedel to get the correction factor then over-relax it
tmp = solution.r (i, j);
solution.r (i, j) = (matrix.r (i, j) + w *
(
matrix.r (i, j - 1) + // west
matrix.r (i, j + 1) + // east
matrix.r (i - 1, j) + // north
matrix.r (i + 1, j) - 4.0 * matrix.r (i, j) // south
)
);
diff = solution.r (i, j) - tmp;
sqr_err_r += diff * diff;
tmp = solution.g (i, j);
solution.g (i, j) = (matrix.g (i, j) + w *
(
matrix.g (i, j - 1) + // west
matrix.g (i, j + 1) + // east
matrix.g (i - 1, j) + // north
matrix.g (i + 1, j) - 4.0 * matrix.g (i, j) // south
)
);
diff = solution.g (i, j) - tmp;
sqr_err_g += diff * diff;
tmp = solution.b (i, j);
solution.b (i, j) = (matrix.b (i, j) + w *
(
matrix.b (i, j - 1) + // west
matrix.b (i, j + 1) + // east
matrix.b (i - 1, j) + // north
matrix.b (i + 1, j) - 4.0 * matrix.b (i, j) // south
)
);
diff = solution.b (i, j) - tmp;
sqr_err_b += diff * diff;
}
}
}
/* Do blacks
*
* As we've done the reds earlier, we can use them right now to
* accelerate the convergence. So we have "solution" in the solver
* instead of "matrix" above
*/
for (i = 0; i < matrix.getHeight(); i++) {
for (j = (i % 2) ? 0 : 1; j < matrix.getWidth(); j += 2) {
printf (":%d,%d", j, i);
if ((0 == mask (i, j)) || (i == 0) || (i == (matrix.getHeight() - 1)) || (j == 0) || (j == (matrix.getWidth() - 1))) {
// do nothing at the boundary or outside mask
solution.r (i, j) = matrix.r (i, j);
solution.g (i, j) = matrix.g (i, j);
solution.b (i, j) = matrix.b (i, j);
} else {
// Use Gauss Siedel to get the correction factor then over-relax it
tmp = solution.r (i, j);
solution.r (i, j) = (matrix.r (i, j) + w *
(
matrix.r (i, j - 1) + // west
matrix.r (i, j + 1) + // east
matrix.r (i - 1, j) + // north
matrix.r (i + 1, j) - 4.0 * matrix.r (i, j) // south
)
);
diff = solution.r (i, j) - tmp;
sqr_err_r += diff * diff;
tmp = solution.g (i, j);
solution.g (i, j) = (matrix.g (i, j) + w *
(
matrix.g (i, j - 1) + // west
matrix.g (i, j + 1) + // east
matrix.g (i - 1, j) + // north
matrix.g (i + 1, j) - 4.0 * matrix.g (i, j) // south
)
);
diff = solution.g (i, j) - tmp;
sqr_err_g += diff * diff;
tmp = solution.b (i, j);
solution.b (i, j) = (matrix.b (i, j) + w *
(
matrix.b (i, j - 1) + // west
matrix.b (i, j + 1) + // east
matrix.b (i - 1, j) + // north
matrix.b (i + 1, j) - 4.0 * matrix.b (i, j) // south
)
);
diff = solution.b (i, j) - tmp;
sqr_err_b += diff * diff;
}
}
}
// ----------------------------------------------------------------
// copy solution to matrix
solution.copyData (&matrix);
if (sqr_err_r < EPSILON && sqr_err_g < EPSILON && sqr_err_b < EPSILON) {
break;
}
printf ("\n>>> n=#%d\n", n);
}
printf ("\n");
#endif
// add solution to original image and store in tempPR
for (int i = 0, i2 = dst_YMin; i2 < dst_YMax - 1; ++i, ++i2) {
if (i2 < 0 || i2 >= img->height) {
continue;
}
for (int j = 0, j2 = dst_XMin; j2 < dst_XMax - 1; ++j, ++j2) {
if (j2 < 0 || j2 >= img->width) {
continue;
}
//float c2 = float (mask (i, j)) / 255.f;
//float c1 = 1.f - c2;
//resultPR->r(i,j) = (unsigned char) CLAMP0255 ( ROUND( double(first->r(i,j)) + double(secondPR->r(i,j)) ) );
img->r (i2, j2) = 65535.0f; //img->r(i2,j2)*c1 + srcBuff->r(i,j)*c2;
img->g (i2, j2) = 0.0f; //img->g(i2,j2)*c1 + srcBuff->g(i,j)*c2;
img->b (i2, j2) = 0.0f; //img->b(i2,j2)*c1 + srcBuff->b(i,j)*c2;
/*
img->r(i2,j2) = img->r(i2,j2)*c1 + (solution.r(i,j) + srcBuff->r(i,j))*c2;
img->g(i2,j2) = img->g(i2,j2)*c1 + (solution.g(i,j) + srcBuff->g(i,j))*c2;
img->b(i2,j2) = img->b(i2,j2)*c1 + (solution.b(i,j) + srcBuff->b(i,j))*c2;
*/
}
}
}
}
}