rawTherapee/rtengine/hilite_recon.cc
2019-03-25 01:53:07 +01:00

1155 lines
40 KiB
C++

////////////////////////////////////////////////////////////////
//
// Highlight reconstruction
//
// copyright (c) 2008-2011 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: June 16, 2011
//
// hilite_recon.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#include <cstddef>
#include <cmath>
#include "array2D.h"
#include "rawimagesource.h"
#include "rt_math.h"
#include "opthelper.h"
namespace rtengine
{
extern const Settings* settings;
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void RawImageSource::boxblur2(float** src, float** dst, float** temp, int H, int W, int box )
{
//box blur image channel; box size = 2*box+1
//horizontal blur
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; row++) {
int len = box + 1;
temp[row][0] = src[row][0] / len;
for (int j = 1; j <= box; j++) {
temp[row][0] += src[row][j] / len;
}
for (int col = 1; col <= box; col++) {
temp[row][col] = (temp[row][col - 1] * len + src[row][col + box]) / (len + 1);
len ++;
}
for (int col = box + 1; col < W - box; col++) {
temp[row][col] = temp[row][col - 1] + (src[row][col + box] - src[row][col - box - 1]) / len;
}
for (int col = W - box; col < W; col++) {
temp[row][col] = (temp[row][col - 1] * len - src[row][col - box - 1]) / (len - 1);
len --;
}
}
#ifdef __SSE2__
//vertical blur
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float len = box + 1;
vfloat lenv = F2V( len );
vfloat lenp1v = F2V( len + 1.0f );
vfloat onev = F2V( 1.0f );
vfloat tempv, temp2v;
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int col = 0; col < W - 7; col += 8) {
tempv = LVFU(temp[0][col]) / lenv;
temp2v = LVFU(temp[0][col + 4]) / lenv;
for (int i = 1; i <= box; i++) {
tempv = tempv + LVFU(temp[i][col]) / lenv;
temp2v = temp2v + LVFU(temp[i][col + 4]) / lenv;
}
_mm_storeu_ps( &dst[0][col], tempv);
_mm_storeu_ps( &dst[0][col + 4], temp2v);
for (int row = 1; row <= box; row++) {
tempv = (tempv * lenv + LVFU(temp[(row + box)][col])) / lenp1v;
temp2v = (temp2v * lenv + LVFU(temp[(row + box)][col + 4])) / lenp1v;
_mm_storeu_ps( &dst[row][col], tempv);
_mm_storeu_ps( &dst[row][col + 4], temp2v);
lenv = lenp1v;
lenp1v = lenp1v + onev;
}
for (int row = box + 1; row < H - box; row++) {
tempv = tempv + (LVFU(temp[(row + box)][col]) - LVFU(temp[(row - box - 1)][col])) / lenv;
temp2v = temp2v + (LVFU(temp[(row + box)][col + 4]) - LVFU(temp[(row - box - 1)][col + 4])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv);
_mm_storeu_ps( &dst[row][col + 4], temp2v);
}
for (int row = H - box; row < H; row++) {
lenp1v = lenv;
lenv = lenv - onev;
tempv = (tempv * lenp1v - LVFU(temp[(row - box - 1)][col])) / lenv;
temp2v = (temp2v * lenp1v - LVFU(temp[(row - box - 1)][col + 4])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv );
_mm_storeu_ps( &dst[row][col + 4], temp2v );
}
}
#ifdef _OPENMP
#pragma omp single
#endif
{
for (int col = W - (W % 8); col < W - 3; col += 4) {
tempv = LVFU(temp[0][col]) / lenv;
for (int i = 1; i <= box; i++) {
tempv = tempv + LVFU(temp[i][col]) / lenv;
}
_mm_storeu_ps( &dst[0][col], tempv);
for (int row = 1; row <= box; row++) {
tempv = (tempv * lenv + LVFU(temp[(row + box)][col])) / lenp1v;
_mm_storeu_ps( &dst[row][col], tempv);
lenv = lenp1v;
lenp1v = lenp1v + onev;
}
for (int row = box + 1; row < H - box; row++) {
tempv = tempv + (LVFU(temp[(row + box)][col]) - LVFU(temp[(row - box - 1)][col])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv);
}
for (int row = H - box; row < H; row++) {
lenp1v = lenv;
lenv = lenv - onev;
tempv = (tempv * lenp1v - LVFU(temp[(row - box - 1)][col])) / lenv;
_mm_storeu_ps( &dst[row][col], tempv );
}
}
for (int col = W - (W % 4); col < W; col++) {
int len = box + 1;
dst[0][col] = temp[0][col] / len;
for (int i = 1; i <= box; i++) {
dst[0][col] += temp[i][col] / len;
}
for (int row = 1; row <= box; row++) {
dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + box)][col]) / (len + 1);
len ++;
}
for (int row = box + 1; row < H - box; row++) {
dst[row][col] = dst[(row - 1)][col] + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
}
for (int row = H - box; row < H; row++) {
dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - box - 1)][col]) / (len - 1);
len --;
}
}
}
}
#else
//vertical blur
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int col = 0; col < W; col++) {
int len = box + 1;
dst[0][col] = temp[0][col] / len;
for (int i = 1; i <= box; i++) {
dst[0][col] += temp[i][col] / len;
}
for (int row = 1; row <= box; row++) {
dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + box)][col]) / (len + 1);
len ++;
}
for (int row = box + 1; row < H - box; row++) {
dst[row][col] = dst[(row - 1)][col] + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
}
for (int row = H - box; row < H; row++) {
dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - box - 1)][col]) / (len - 1);
len --;
}
}
#endif
}
void RawImageSource::boxblur_resamp(float **src, float **dst, float ** temp, int H, int W, int box, int samp )
{
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
//box blur image channel; box size = 2*box+1
//horizontal blur
for (int row = 0; row < H; row++)
{
int len = box + 1;
float tempval = src[row][0] / len;
for (int j = 1; j <= box; j++) {
tempval += src[row][j] / len;
}
temp[row][0] = tempval;
for (int col = 1; col <= box; col++) {
tempval = (tempval * len + src[row][col + box]) / (len + 1);
if(col % samp == 0) {
temp[row][col / samp] = tempval;
}
len ++;
}
float oneByLen = 1.f / (float)len;
for (int col = box + 1; col < W - box; col++) {
tempval = tempval + (src[row][col + box] - src[row][col - box - 1]) * oneByLen;
if(col % samp == 0) {
temp[row][col / samp] = tempval;
}
}
for (int col = W - box; col < W; col++) {
tempval = (tempval * len - src[row][col - box - 1]) / (len - 1);
if(col % samp == 0) {
temp[row][col / samp] = tempval;
}
len --;
}
}
}
static const int numCols = 8; // process numCols columns at once for better L1 CPU cache usage
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float tempvalN[numCols] ALIGNED16;
#ifdef _OPENMP
#pragma omp for nowait
#endif
//vertical blur
for (int col = 0; col < (W / samp) - (numCols - 1); col += numCols) {
int len = box + 1;
for(int n = 0; n < numCols; n++) {
tempvalN[n] = temp[0][col + n] / len;
}
for (int i = 1; i <= box; i++) {
for(int n = 0; n < numCols; n++) {
tempvalN[n] += temp[i][col + n] / len;
}
}
for(int n = 0; n < numCols; n++) {
dst[0][col + n] = tempvalN[n];
}
for (int row = 1; row <= box; row++) {
for(int n = 0; n < numCols; n++) {
tempvalN[n] = (tempvalN[n] * len + temp[(row + box)][col + n]) / (len + 1);
}
if(row % samp == 0) {
for(int n = 0; n < numCols; n++) {
dst[row / samp][col + n] = tempvalN[n];
}
}
len ++;
}
for (int row = box + 1; row < H - box; row++) {
for(int n = 0; n < numCols; n++) {
tempvalN[n] = tempvalN[n] + (temp[(row + box)][col + n] - temp[(row - box - 1)][col + n]) / len;
}
if(row % samp == 0) {
for(int n = 0; n < numCols; n++) {
dst[row / samp][col + n] = tempvalN[n];
}
}
}
for (int row = H - box; row < H; row++) {
for(int n = 0; n < numCols; n++) {
tempvalN[n] = (tempvalN[n] * len - temp[(row - box - 1)][col + n]) / (len - 1);
}
if(row % samp == 0) {
for(int n = 0; n < numCols; n++) {
dst[row / samp][col + n] = tempvalN[n];
}
}
len --;
}
}
// process remaining columns
#ifdef _OPENMP
#pragma omp single
#endif
{
//vertical blur
for (int col = (W / samp) - ((W / samp) % numCols); col < W / samp; col++) {
int len = box + 1;
float tempval = temp[0][col] / len;
for (int i = 1; i <= box; i++) {
tempval += temp[i][col] / len;
}
dst[0][col] = tempval;
for (int row = 1; row <= box; row++) {
tempval = (tempval * len + temp[(row + box)][col]) / (len + 1);
if(row % samp == 0) {
dst[row / samp][col] = tempval;
}
len ++;
}
for (int row = box + 1; row < H - box; row++) {
tempval = tempval + (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
if(row % samp == 0) {
dst[row / samp][col] = tempval;
}
}
for (int row = H - box; row < H; row++) {
tempval = (tempval * len - temp[(row - box - 1)][col]) / (len - 1);
if(row % samp == 0) {
dst[row / samp][col] = tempval;
}
len --;
}
}
}
}
}
void RawImageSource :: HLRecovery_inpaint (float** red, float** green, float** blue)
{
double progress = 0.0;
if (plistener) {
plistener->setProgressStr ("PROGRESSBAR_HLREC");
plistener->setProgress (progress);
}
int height = H;
int width = W;
constexpr int range = 2;
constexpr int pitch = 4;
constexpr float threshpct = 0.25f;
constexpr float maxpct = 0.95f;
constexpr float epsilon = 0.00001f;
//%%%%%%%%%%%%%%%%%%%%
//for blend algorithm:
constexpr float blendthresh = 1.0;
constexpr int ColorCount = 3;
// Transform matrixes rgb>lab and back
constexpr float trans[ColorCount][ColorCount] =
{ { 1.f, 1.f, 1.f }, { 1.7320508f, -1.7320508f, 0.f }, { -1.f, -1.f, 2.f } };
constexpr float itrans[ColorCount][ColorCount] =
{ { 1.f, 0.8660254f, -0.5f }, { 1.f, -0.8660254f, -0.5f }, { 1.f, 0.f, 1.f } };
if(settings->verbose)
for(int c = 0; c < 3; c++) {
printf("chmax[%d] : %f\tclmax[%d] : %f\tratio[%d] : %f\n", c, chmax[c], c, clmax[c], c, chmax[c] / clmax[c]);
}
float factor[3];
for(int c = 0; c < ColorCount; c++) {
factor[c] = chmax[c] / clmax[c];
}
float minFactor = min(factor[0], factor[1], factor[2]);
if(minFactor > 1.f) { // all 3 channels clipped
// calculate clip factor per channel
for (int c = 0; c < ColorCount; c++) {
factor[c] /= minFactor;
}
// get max clip factor
int maxpos = 0;
float maxValNew = 0.f;
for (int c = 0; c < ColorCount; c++) {
if(chmax[c] / factor[c] > maxValNew) {
maxValNew = chmax[c] / factor[c];
maxpos = c;
}
}
float clipFactor = clmax[maxpos] / maxValNew;
if(clipFactor < maxpct)
// if max clipFactor < maxpct (0.95) adjust per channel factors
for (int c = 0; c < ColorCount; c++) {
factor[c] *= (maxpct / clipFactor);
}
} else {
factor[0] = factor[1] = factor[2] = 1.f;
}
if(settings->verbose)
for (int c = 0; c < ColorCount; c++) {
printf("correction factor[%d] : %f\n", c, factor[c]);
}
float max_f[3], thresh[3];
for (int c = 0; c < ColorCount; c++) {
thresh[c] = chmax[c] * threshpct / factor[c];
max_f[c] = chmax[c] * maxpct / factor[c];
}
float whitept = max(max_f[0], max_f[1], max_f[2]);
float clippt = min(max_f[0], max_f[1], max_f[2]);
float medpt = max_f[0] + max_f[1] + max_f[2] - whitept - clippt;
float blendpt = blendthresh * clippt;
float medFactor[3];
for (int c = 0; c < ColorCount; c++) {
medFactor[c] = max(1.0f, max_f[c] / medpt) / (-blendpt);
}
multi_array2D<float, 3> channelblur(width, height, 0, 48);
array2D<float> temp(width, height); // allocate temporary buffer
// blur RGB channels
boxblur2(red, channelblur[0], temp, height, width, 4);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
boxblur2(green, channelblur[1], temp, height, width, 4);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
boxblur2(blue, channelblur[2], temp, height, width, 4);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
// reduce channel blur to one array
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
channelblur[0][i][j] = fabsf(channelblur[0][i][j] - red[i][j]) + fabsf(channelblur[1][i][j] - green[i][j]) + fabsf(channelblur[2][i][j] - blue[i][j]);
}
for (int c = 1; c < 3; c++) {
channelblur[c].free(); //free up some memory
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
multi_array2D<float, 4> hilite_full(width, height, ARRAY2D_CLEAR_DATA, 32);
if(plistener) {
progress += 0.10;
plistener->setProgress(progress);
}
double hipass_sum = 0.f;
int hipass_norm = 0;
// set up which pixels are clipped or near clipping
#ifdef _OPENMP
#pragma omp parallel for reduction(+:hipass_sum,hipass_norm) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
//if one or more channels is highlight but none are blown, add to highlight accumulator
if ((red[i][j] > thresh[0] || green[i][j] > thresh[1] || blue[i][j] > thresh[2]) &&
(red[i][j] < max_f[0] && green[i][j] < max_f[1] && blue[i][j] < max_f[2])) {
hipass_sum += channelblur[0][i][j];
hipass_norm ++;
hilite_full[0][i][j] = red[i][j];
hilite_full[1][i][j] = green[i][j];
hilite_full[2][i][j] = blue[i][j];
hilite_full[3][i][j] = 1.f;
}
}
}//end of filling highlight array
float hipass_ave = 2.f * hipass_sum / (hipass_norm + epsilon);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
array2D<float> hilite_full4(width, height);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//blur highlight data
boxblur2(hilite_full[3], hilite_full4, temp, height, width, 1);
temp.free(); // free temporary buffer
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (channelblur[0][i][j] > hipass_ave) {
//too much variation
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f;
continue;
}
if (hilite_full4[i][j] > epsilon && hilite_full4[i][j] < 0.95f) {
//too near an edge, could risk using CA affected pixels, therefore omit
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f;
}
}
}
channelblur[0].free(); //free up some memory
hilite_full4.free(); //free up some memory
int hfh = (height - (height % pitch)) / pitch;
int hfw = (width - (width % pitch)) / pitch;
multi_array2D<float, 4> hilite(hfw + 1, hfh + 1, ARRAY2D_CLEAR_DATA, 48);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// blur and resample highlight data; range=size of blur, pitch=sample spacing
array2D<float> temp2((width / pitch) + ((width % pitch) == 0 ? 0 : 1), height);
for (int m = 0; m < 4; m++) {
boxblur_resamp(hilite_full[m], hilite[m], temp2, height, width, range, pitch);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
}
temp2.free();
for (int c = 0; c < 4; c++) {
hilite_full[c].free(); //free up some memory
}
multi_array2D<float, 8> hilite_dir(hfw, hfh, ARRAY2D_CLEAR_DATA, 64);
// for faster processing we create two buffers using (height,width) instead of (width,height)
multi_array2D<float, 4> hilite_dir0(hfh, hfw, ARRAY2D_CLEAR_DATA, 64);
multi_array2D<float, 4> hilite_dir4(hfh, hfw, ARRAY2D_CLEAR_DATA, 64);
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//fill gaps in highlight map by directional extension
//raster scan from four corners
for (int j = 1; j < hfw - 1; j++) {
for (int i = 2; i < hfh - 2; i++) {
//from left
if (hilite[3][i][j] > epsilon) {
hilite_dir0[3][j][i] = 1.f;
} else {
hilite_dir0[3][j][i] = (hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2]) == 0.f ? 0.f : 0.1f;
}
}
if(hilite[3][2][j] <= epsilon) {
hilite_dir[0 + 3][0][j] = hilite_dir0[3][j][2];
}
if(hilite[3][3][j] <= epsilon) {
hilite_dir[0 + 3][1][j] = hilite_dir0[3][j][3];
}
if(hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 1][j] = hilite_dir0[3][j][hfh - 3];
}
if(hilite[3][hfh - 4][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 2][j] = hilite_dir0[3][j][hfh - 4];
}
}
for (int i = 2; i < hfh - 2; i++) {
if(hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir4[3][hfw - 1][i] = hilite_dir0[3][hfw - 2][i];
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int c = 0; c < 3; c++) {
for (int j = 1; j < hfw - 1; j++) {
for (int i = 2; i < hfh - 2; i++) {
//from left
if (hilite[3][i][j] > epsilon) {
hilite_dir0[c][j][i] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir0[c][j][i] = 0.1f * ((hilite_dir0[0 + c][j - 1][i - 2] + hilite_dir0[0 + c][j - 1][i - 1] + hilite_dir0[0 + c][j - 1][i] + hilite_dir0[0 + c][j - 1][i + 1] + hilite_dir0[0 + c][j - 1][i + 2]) /
(hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2] + epsilon));
}
}
if(hilite[3][2][j] <= epsilon) {
hilite_dir[0 + c][0][j] = hilite_dir0[c][j][2];
}
if(hilite[3][3][j] <= epsilon) {
hilite_dir[0 + c][1][j] = hilite_dir0[c][j][3];
}
if(hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + c][hfh - 1][j] = hilite_dir0[c][j][hfh - 3];
}
if(hilite[3][hfh - 4][j] <= epsilon) {
hilite_dir[4 + c][hfh - 2][j] = hilite_dir0[c][j][hfh - 4];
}
}
for (int i = 2; i < hfh - 2; i++) {
if(hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir4[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i];
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
for (int j = hfw - 2; j > 0; j--) {
for (int i = 2; i < hfh - 2; i++) {
//from right
if (hilite[3][i][j] > epsilon) {
hilite_dir4[3][j][i] = 1.f;
} else {
hilite_dir4[3][j][i] = (hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)]) == 0.f ? 0.f : 0.1f;
}
}
if(hilite[3][2][j] <= epsilon) {
hilite_dir[0 + 3][0][j] += hilite_dir4[3][j][2];
}
if(hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 1][j] += hilite_dir4[3][j][hfh - 3];
}
}
for (int i = 2; i < hfh - 2; i++) {
if(hilite[3][i][0] <= epsilon) {
hilite_dir[0 + 3][i - 2][0] += hilite_dir4[3][0][i];
hilite_dir[4 + 3][i + 2][0] += hilite_dir4[3][0][i];
}
if(hilite[3][i][1] <= epsilon) {
hilite_dir[0 + 3][i - 2][1] += hilite_dir4[3][1][i];
hilite_dir[4 + 3][i + 2][1] += hilite_dir4[3][1][i];
}
if(hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir[0 + 3][i - 2][hfw - 2] += hilite_dir4[3][hfw - 2][i];
hilite_dir[4 + 3][i + 2][hfw - 2] += hilite_dir4[3][hfw - 2][i];
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int c = 0; c < 3; c++) {
for (int j = hfw - 2; j > 0; j--) {
for (int i = 2; i < hfh - 2; i++) {
//from right
if (hilite[3][i][j] > epsilon) {
hilite_dir4[c][j][i] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir4[c][j][i] = 0.1 * ((hilite_dir4[c][(j + 1)][(i - 2)] + hilite_dir4[c][(j + 1)][(i - 1)] + hilite_dir4[c][(j + 1)][(i)] + hilite_dir4[c][(j + 1)][(i + 1)] + hilite_dir4[c][(j + 1)][(i + 2)]) /
(hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)] + epsilon));
}
}
if(hilite[3][2][j] <= epsilon) {
hilite_dir[0 + c][0][j] += hilite_dir4[c][j][2];
}
if(hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + c][hfh - 1][j] += hilite_dir4[c][j][hfh - 3];
}
}
for (int i = 2; i < hfh - 2; i++) {
if(hilite[3][i][0] <= epsilon) {
hilite_dir[0 + c][i - 2][0] += hilite_dir4[c][0][i];
hilite_dir[4 + c][i + 2][0] += hilite_dir4[c][0][i];
}
if(hilite[3][i][1] <= epsilon) {
hilite_dir[0 + c][i - 2][1] += hilite_dir4[c][1][i];
hilite_dir[4 + c][i + 2][1] += hilite_dir4[c][1][i];
}
if(hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir[0 + c][i - 2][hfw - 2] += hilite_dir4[c][hfw - 2][i];
hilite_dir[4 + c][i + 2][hfw - 2] += hilite_dir4[c][hfw - 2][i];
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
for (int i = 1; i < hfh - 1; i++)
for (int j = 2; j < hfw - 2; j++) {
//from top
if (hilite[3][i][j] > epsilon) {
hilite_dir[0 + 3][i][j] = 1.f;
} else {
hilite_dir[0 + 3][i][j] = (hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2]) == 0.f ? 0.f : 0.1f;
}
}
for (int j = 2; j < hfw - 2; j++) {
if(hilite[3][hfh - 2][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 1][j] += hilite_dir[0 + 3][hfh - 2][j];
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int c = 0; c < 3; c++) {
for (int i = 1; i < hfh - 1; i++) {
for (int j = 2; j < hfw - 2; j++) {
//from top
if (hilite[3][i][j] > epsilon) {
hilite_dir[0 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir[0 + c][i][j] = 0.1 * ((hilite_dir[0 + c][i - 1][j - 2] + hilite_dir[0 + c][i - 1][j - 1] + hilite_dir[0 + c][i - 1][j] + hilite_dir[0 + c][i - 1][j + 1] + hilite_dir[0 + c][i - 1][j + 2]) /
(hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2] + epsilon));
}
}
}
for (int j = 2; j < hfw - 2; j++) {
if(hilite[3][hfh - 2][j] <= epsilon) {
hilite_dir[4 + c][hfh - 1][j] += hilite_dir[0 + c][hfh - 2][j];
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
for (int i = hfh - 2; i > 0; i--)
for (int j = 2; j < hfw - 2; j++) {
//from bottom
if (hilite[3][i][j] > epsilon) {
hilite_dir[4 + 3][i][j] = 1.f;
} else {
hilite_dir[4 + 3][i][j] = (hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)]) == 0.f ? 0.f : 0.1f;
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int c = 0; c < 4; c++) {
for (int i = hfh - 2; i > 0; i--) {
for (int j = 2; j < hfw - 2; j++) {
//from bottom
if (hilite[3][i][j] > epsilon) {
hilite_dir[4 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir[4 + c][i][j] = 0.1 * ((hilite_dir[4 + c][(i + 1)][(j - 2)] + hilite_dir[4 + c][(i + 1)][(j - 1)] + hilite_dir[4 + c][(i + 1)][(j)] + hilite_dir[4 + c][(i + 1)][(j + 1)] + hilite_dir[4 + c][(i + 1)][(j + 2)]) /
(hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)] + epsilon));
}
}
}
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//fill in edges
for (int dir = 0; dir < 2; dir++) {
for (int i = 1; i < hfh - 1; i++)
for (int c = 0; c < 4; c++) {
hilite_dir[dir * 4 + c][i][0] = hilite_dir[dir * 4 + c][i][1];
hilite_dir[dir * 4 + c][i][hfw - 1] = hilite_dir[dir * 4 + c][i][hfw - 2];
}
for (int j = 1; j < hfw - 1; j++)
for (int c = 0; c < 4; c++) {
hilite_dir[dir * 4 + c][0][j] = hilite_dir[dir * 4 + c][1][j];
hilite_dir[dir * 4 + c][hfh - 1][j] = hilite_dir[dir * 4 + c][hfh - 2][j];
}
for (int c = 0; c < 4; c++) {
hilite_dir[dir * 4 + c][0][0] = hilite_dir[dir * 4 + c][1][0] = hilite_dir[dir * 4 + c][0][1] = hilite_dir[dir * 4 + c][1][1] = hilite_dir[dir * 4 + c][2][2];
hilite_dir[dir * 4 + c][0][hfw - 1] = hilite_dir[dir * 4 + c][1][hfw - 1] = hilite_dir[dir * 4 + c][0][hfw - 2] = hilite_dir[dir * 4 + c][1][hfw - 2] = hilite_dir[dir * 4 + c][2][hfw - 3];
hilite_dir[dir * 4 + c][hfh - 1][0] = hilite_dir[dir * 4 + c][hfh - 2][0] = hilite_dir[dir * 4 + c][hfh - 1][1] = hilite_dir[dir * 4 + c][hfh - 2][1] = hilite_dir[dir * 4 + c][hfh - 3][2];
hilite_dir[dir * 4 + c][hfh - 1][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 1][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 3][hfw - 3];
}
}
for (int i = 1; i < hfh - 1; i++)
for (int c = 0; c < 4; c++) {
hilite_dir0[c][0][i] = hilite_dir0[c][1][i];
hilite_dir0[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i];
}
for (int j = 1; j < hfw - 1; j++)
for (int c = 0; c < 4; c++) {
hilite_dir0[c][j][0] = hilite_dir0[c][j][1];
hilite_dir0[c][j][hfh - 1] = hilite_dir0[c][j][hfh - 2];
}
for (int c = 0; c < 4; c++) {
hilite_dir0[c][0][0] = hilite_dir0[c][0][1] = hilite_dir0[c][1][0] = hilite_dir0[c][1][1] = hilite_dir0[c][2][2];
hilite_dir0[c][hfw - 1][0] = hilite_dir0[c][hfw - 1][1] = hilite_dir0[c][hfw - 2][0] = hilite_dir0[c][hfw - 2][1] = hilite_dir0[c][hfw - 3][2];
hilite_dir0[c][0][hfh - 1] = hilite_dir0[c][0][hfh - 2] = hilite_dir0[c][1][hfh - 1] = hilite_dir0[c][1][hfh - 2] = hilite_dir0[c][2][hfh - 3];
hilite_dir0[c][hfw - 1][hfh - 1] = hilite_dir0[c][hfw - 1][hfh - 2] = hilite_dir0[c][hfw - 2][hfh - 1] = hilite_dir0[c][hfw - 2][hfh - 2] = hilite_dir0[c][hfw - 3][hfh - 3];
}
for (int i = 1; i < hfh - 1; i++)
for (int c = 0; c < 4; c++) {
hilite_dir4[c][0][i] = hilite_dir4[c][1][i];
hilite_dir4[c][hfw - 1][i] = hilite_dir4[c][hfw - 2][i];
}
for (int j = 1; j < hfw - 1; j++)
for (int c = 0; c < 4; c++) {
hilite_dir4[c][j][0] = hilite_dir4[c][j][1];
hilite_dir4[c][j][hfh - 1] = hilite_dir4[c][j][hfh - 2];
}
for (int c = 0; c < 4; c++) {
hilite_dir4[c][0][0] = hilite_dir4[c][0][1] = hilite_dir4[c][1][0] = hilite_dir4[c][1][1] = hilite_dir4[c][2][2];
hilite_dir4[c][hfw - 1][0] = hilite_dir4[c][hfw - 1][1] = hilite_dir4[c][hfw - 2][0] = hilite_dir4[c][hfw - 2][1] = hilite_dir4[c][hfw - 3][2];
hilite_dir4[c][0][hfh - 1] = hilite_dir4[c][0][hfh - 2] = hilite_dir4[c][1][hfh - 1] = hilite_dir4[c][1][hfh - 2] = hilite_dir4[c][2][hfh - 3];
hilite_dir4[c][hfw - 1][hfh - 1] = hilite_dir4[c][hfw - 1][hfh - 2] = hilite_dir4[c][hfw - 2][hfh - 1] = hilite_dir4[c][hfw - 2][hfh - 2] = hilite_dir4[c][hfw - 3][hfh - 3];
}
if(plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//free up some memory
for(int c = 0; c < 4; c++) {
hilite[c].free();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// now reconstruct clipped channels using color ratios
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
int i1 = min((i - (i % pitch)) / pitch, hfh - 1);
for (int j = 0; j < width; j++) {
float pixel[3] = {red[i][j], green[i][j], blue[i][j]};
if (pixel[0] < max_f[0] && pixel[1] < max_f[1] && pixel[2] < max_f[2]) {
continue; //pixel not clipped
}
int j1 = min((j - (j % pitch)) / pitch, hfw - 1);
//estimate recovered values using modified HLRecovery_blend algorithm
float rgb[ColorCount], rgb_blend[ColorCount] = {}, cam[2][ColorCount], lab[2][ColorCount], sum[2], chratio;
// Copy input pixel to rgb so it's easier to access in loops
rgb[0] = pixel[0];
rgb[1] = pixel[1];
rgb[2] = pixel[2];
// Initialize cam with raw input [0] and potentially clipped input [1]
for (int c = 0; c < ColorCount; c++) {
cam[0][c] = rgb[c];
cam[1][c] = min(cam[0][c], clippt);
}
// Calculate the lightness correction ratio (chratio)
for (int i2 = 0; i2 < 2; i2++) {
for (int c = 0; c < ColorCount; c++) {
lab[i2][c] = 0;
for (int j = 0; j < ColorCount; j++) {
lab[i2][c] += trans[c][j] * cam[i2][j];
}
}
sum[i2] = 0.f;
for (int c = 1; c < ColorCount; c++) {
sum[i2] += SQR(lab[i2][c]);
}
}
if(sum[0] == 0.f) { // avoid division by zero
sum[0] = epsilon;
}
chratio = sqrtf(sum[1] / sum[0]);
// Apply ratio to lightness in lab space
for (int c = 1; c < ColorCount; c++) {
lab[0][c] *= chratio;
}
// Transform back from lab to RGB
for (int c = 0; c < ColorCount; c++) {
cam[0][c] = 0;
for (int j = 0; j < ColorCount; j++) {
cam[0][c] += itrans[c][j] * lab[0][j];
}
}
for (int c = 0; c < ColorCount; c++) {
rgb[c] = cam[0][c] / ColorCount;
}
// Copy converted pixel back
float rfrac = max(0.f, min(1.f, medFactor[0] * (pixel[0] - blendpt)));
float gfrac = max(0.f, min(1.f, medFactor[1] * (pixel[1] - blendpt)));
float bfrac = max(0.f, min(1.f, medFactor[2] * (pixel[2] - blendpt)));
if (pixel[0] > blendpt) {
rgb_blend[0] = rfrac * rgb[0] + (1.f - rfrac) * pixel[0];
}
if (pixel[1] > blendpt) {
rgb_blend[1] = gfrac * rgb[1] + (1.f - gfrac) * pixel[1];
}
if (pixel[2] > blendpt) {
rgb_blend[2] = bfrac * rgb[2] + (1.f - bfrac) * pixel[2];
}
//end of HLRecovery_blend estimation
//%%%%%%%%%%%%%%%%%%%%%%%
//there are clipped highlights
//first, determine weighted average of unclipped extensions (weighting is by 'hue' proximity)
float totwt = 0.f;
float clipfix[3] = {0.f, 0.f, 0.f};
float Y = epsilon + rgb_blend[0] + rgb_blend[1] + rgb_blend[2];
for (int c = 0; c < ColorCount; c++) {
rgb_blend[c] /= Y;
}
float Yhi = 1.f / (hilite_dir0[0][j1][i1] + hilite_dir0[1][j1][i1] + hilite_dir0[2][j1][i1]);
if (Yhi < 2.f) {
float dirwt = 1.f / (1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir0[0][j1][i1] * Yhi) +
SQR(rgb_blend[1] - hilite_dir0[1][j1][i1] * Yhi) +
SQR(rgb_blend[2] - hilite_dir0[2][j1][i1] * Yhi)));
totwt = dirwt;
dirwt /= (hilite_dir0[3][j1][i1] + epsilon);
clipfix[0] = dirwt * hilite_dir0[0][j1][i1];
clipfix[1] = dirwt * hilite_dir0[1][j1][i1];
clipfix[2] = dirwt * hilite_dir0[2][j1][i1];
}
for (int dir = 0; dir < 2; dir++) {
float Yhi = 1.f / ( hilite_dir[dir * 4 + 0][i1][j1] + hilite_dir[dir * 4 + 1][i1][j1] + hilite_dir[dir * 4 + 2][i1][j1]);
if (Yhi < 2.f) {
float dirwt = 1.f / (1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir[dir * 4 + 0][i1][j1] * Yhi) +
SQR(rgb_blend[1] - hilite_dir[dir * 4 + 1][i1][j1] * Yhi) +
SQR(rgb_blend[2] - hilite_dir[dir * 4 + 2][i1][j1] * Yhi)));
totwt += dirwt;
dirwt /= (hilite_dir[dir * 4 + 3][i1][j1] + epsilon);
clipfix[0] += dirwt * hilite_dir[dir * 4 + 0][i1][j1];
clipfix[1] += dirwt * hilite_dir[dir * 4 + 1][i1][j1];
clipfix[2] += dirwt * hilite_dir[dir * 4 + 2][i1][j1];
}
}
Yhi = 1.f / (hilite_dir4[0][j1][i1] + hilite_dir4[1][j1][i1] + hilite_dir4[2][j1][i1]);
if (Yhi < 2.f) {
float dirwt = 1.f / (1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir4[0][j1][i1] * Yhi) +
SQR(rgb_blend[1] - hilite_dir4[1][j1][i1] * Yhi) +
SQR(rgb_blend[2] - hilite_dir4[2][j1][i1] * Yhi)));
totwt += dirwt;
dirwt /= (hilite_dir4[3][j1][i1] + epsilon);
clipfix[0] += dirwt * hilite_dir4[0][j1][i1];
clipfix[1] += dirwt * hilite_dir4[1][j1][i1];
clipfix[2] += dirwt * hilite_dir4[2][j1][i1];
}
if(totwt == 0.f) {
continue;
}
clipfix[0] /= totwt;
clipfix[1] /= totwt;
clipfix[2] /= totwt;
//now correct clipped channels
if (pixel[0] > max_f[0] && pixel[1] > max_f[1] && pixel[2] > max_f[2]) {
//all channels clipped
float Y = (0.299 * clipfix[0] + 0.587 * clipfix[1] + 0.114 * clipfix[2]);
float factor = whitept / Y;
red[i][j] = clipfix[0] * factor;
green[i][j] = clipfix[1] * factor;
blue[i][j] = clipfix[2] * factor;
} else {//some channels clipped
float notclipped[3] = {pixel[0] <= max_f[0] ? 1.f : 0.f, pixel[1] <= max_f[1] ? 1.f : 0.f, pixel[2] <= max_f[2] ? 1.f : 0.f};
if (notclipped[0] == 0.f) { //red clipped
red[i][j] = max(red[i][j], (clipfix[0] * ((notclipped[1] * pixel[1] + notclipped[2] * pixel[2]) /
(notclipped[1] * clipfix[1] + notclipped[2] * clipfix[2] + epsilon))));
}
if (notclipped[1] == 0.f) { //green clipped
green[i][j] = max(green[i][j], (clipfix[1] * ((notclipped[2] * pixel[2] + notclipped[0] * pixel[0]) /
(notclipped[2] * clipfix[2] + notclipped[0] * clipfix[0] + epsilon))));
}
if (notclipped[2] == 0.f) { //blue clipped
blue[i][j] = max(blue[i][j], (clipfix[2] * ((notclipped[0] * pixel[0] + notclipped[1] * pixel[1]) /
(notclipped[0] * clipfix[0] + notclipped[1] * clipfix[1] + epsilon))));
}
}
Y = (0.299 * red[i][j] + 0.587 * green[i][j] + 0.114 * blue[i][j]);
if (Y > whitept) {
float factor = whitept / Y;
red[i][j] *= factor;
green[i][j] *= factor;
blue[i][j] *= factor;
}
}
}
if(plistener) {
plistener->setProgress(1.00);
}
}// end of HLReconstruction
}