1490 lines
38 KiB
C++
1490 lines
38 KiB
C++
////////////////////////////////////////////////////////////////
|
|
//
|
|
// Chromatic Aberration Auto-correction
|
|
//
|
|
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
|
|
//
|
|
//
|
|
// code dated: November 24, 2010
|
|
// optimized: September 2013, Ingo Weyrich
|
|
//
|
|
// PF_correct_RT.cc is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
////////////////////////////////////////////////////////////////
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
#include "gauss.h"
|
|
#include "improcfun.h"
|
|
#include "sleef.c"
|
|
#include "mytime.h"
|
|
#include "../rtgui/myflatcurve.h"
|
|
#include "rt_math.h"
|
|
#include "opthelper.h"
|
|
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
namespace rtengine {
|
|
extern const Settings* settings;
|
|
|
|
SSEFUNCTION void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh)
|
|
{
|
|
const int halfwin = ceil(2*radius)+1;
|
|
|
|
FlatCurve* chCurve = NULL;
|
|
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear)
|
|
chCurve = new FlatCurve(params->defringe.huecurve);
|
|
|
|
// local variables
|
|
const int width=src->W, height=src->H;
|
|
//temporary array to store chromaticity
|
|
float (*fringe);
|
|
fringe = (float (*)) malloc (height * width * sizeof(*fringe));
|
|
|
|
LabImage * tmp1;
|
|
tmp1 = new LabImage(width, height);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
AlignedBufferMP<double> buffer(max(src->W,src->H));
|
|
gaussHorizontal<float> (src->a, tmp1->a, buffer, src->W, src->H, radius);
|
|
gaussHorizontal<float> (src->b, tmp1->b, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmp1->a, tmp1->a, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmp1->b, tmp1->b, buffer, src->W, src->H, radius);
|
|
}
|
|
|
|
float chromave=0.0f;
|
|
|
|
#ifdef __SSE2__
|
|
if( chCurve ) {
|
|
// vectorized precalculation of the atan2 values
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(j = 0; j < width-3; j+=4)
|
|
_mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(src->b[i][j]),LVFU(src->a[i][j])));
|
|
for(; j < width; j++)
|
|
fringe[i*width+j]=xatan2f(src->b[i][j],src->a[i][j]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
float chromaChfactor = 1.0f;
|
|
#ifdef _OPENMP
|
|
#pragma omp for reduction(+:chromave)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
if (chCurve) {
|
|
#ifdef __SSE2__
|
|
// use the precalculated atan values
|
|
float HH=fringe[i*width+j];
|
|
#else
|
|
// no precalculated values without SSE => calculate
|
|
float HH=xatan2f(src->b[i][j],src->a[i][j]);
|
|
#endif
|
|
float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH)))-0.5f) * 2.0f);//get C=f(H)
|
|
if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0
|
|
chromaChfactor=1.0f+chparam;
|
|
}
|
|
float chroma = SQR(chromaChfactor*(src->a[i][j]-tmp1->a[i][j]))+SQR(chromaChfactor*(src->b[i][j]-tmp1->b[i][j]));//modulate chroma function hue
|
|
chromave += chroma;
|
|
fringe[i*width+j]=chroma;
|
|
}
|
|
}
|
|
}
|
|
|
|
chromave /= (height*width);
|
|
float threshfactor = SQR(thresh/33.f)*chromave*5.0f;
|
|
|
|
|
|
// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future
|
|
#ifdef __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
__m128 sumv = _mm_set1_ps( chromave );
|
|
__m128 onev = _mm_set1_ps( 1.0f );
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int j=0; j < width*height-3; j+=4)
|
|
_mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv));
|
|
}
|
|
for(int j=width*height - (width*height)%4; j < width*height; j++)
|
|
fringe[j] = 1.f/(fringe[j]+chromave);
|
|
#else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int j = 0; j < width*height; j++)
|
|
fringe[j] = 1.f/(fringe[j]+chromave);
|
|
#endif
|
|
|
|
// because we changed the values of fringe we also have to recalculate threshfactor
|
|
threshfactor = 1.0f/(threshfactor + chromave);
|
|
|
|
// Issue 1674:
|
|
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
|
|
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
|
|
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
|
|
// choice for the chunk_size than 16
|
|
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
int j;
|
|
for(j = 0; j < halfwin-1; j++) {
|
|
tmp1->a[i][j] = src->a[i][j];
|
|
tmp1->b[i][j] = src->b[i][j];
|
|
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
|
|
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
|
|
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
|
|
if (fringe[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=0; j1<j+halfwin; j1++) {
|
|
//neighborhood average of pixels weighted by chrominance
|
|
wt = fringe[i1*width+j1];
|
|
atot += wt*src->a[i1][j1];
|
|
btot += wt*src->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
tmp1->a[i][j] = atot/norm;
|
|
tmp1->b[i][j] = btot/norm;
|
|
}
|
|
}
|
|
for(; j < width-halfwin+1; j++) {
|
|
tmp1->a[i][j] = src->a[i][j];
|
|
tmp1->b[i][j] = src->b[i][j];
|
|
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
|
|
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
|
|
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
|
|
if (fringe[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
|
|
//neighborhood average of pixels weighted by chrominance
|
|
wt = fringe[i1*width+j1];
|
|
atot += wt*src->a[i1][j1];
|
|
btot += wt*src->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
tmp1->a[i][j] = atot/norm;
|
|
tmp1->b[i][j] = btot/norm;
|
|
}
|
|
}
|
|
for(; j < width; j++) {
|
|
tmp1->a[i][j] = src->a[i][j];
|
|
tmp1->b[i][j] = src->b[i][j];
|
|
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
|
|
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
|
|
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
|
|
if (fringe[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<width; j1++) {
|
|
//neighborhood average of pixels weighted by chrominance
|
|
wt = fringe[i1*width+j1];
|
|
atot += wt*src->a[i1][j1];
|
|
btot += wt*src->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
tmp1->a[i][j] = atot/norm;
|
|
tmp1->b[i][j] = btot/norm;
|
|
}
|
|
}
|
|
}//end of ab channel averaging
|
|
|
|
if(src != dst)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
dst->L[i][j] = src->L[i][j];
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
dst->a[i][j] = tmp1->a[i][j];
|
|
dst->b[i][j] = tmp1->b[i][j];
|
|
}
|
|
}
|
|
|
|
|
|
delete tmp1;
|
|
if(chCurve) delete chCurve;
|
|
free(fringe);
|
|
}
|
|
|
|
SSEFUNCTION void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh)
|
|
{
|
|
const int halfwin = ceil(2*radius)+1;
|
|
|
|
FlatCurve* chCurve = NULL;
|
|
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear)
|
|
chCurve = new FlatCurve(params->defringe.huecurve);
|
|
|
|
// local variables
|
|
const int width=src->W, height=src->H;
|
|
const float piid=3.14159265f/180.f;
|
|
const float eps2=0.01f;
|
|
|
|
//temporary array to store chromaticity
|
|
float (*fringe);
|
|
fringe = (float (*)) malloc (height * width * sizeof(*fringe));
|
|
|
|
float** sraa;
|
|
sraa = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
sraa[i] = new float[width];
|
|
|
|
float** srbb;
|
|
srbb = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
srbb[i] = new float[width];
|
|
|
|
float** tmaa;
|
|
tmaa = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
tmaa[i] = new float[width];
|
|
|
|
float** tmbb;
|
|
tmbb = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
tmbb[i] = new float[width];
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
float2 sincosval;
|
|
#ifdef __SSE2__
|
|
int j;
|
|
vfloat2 sincosvalv;
|
|
__m128 piidv = _mm_set1_ps(piid);
|
|
#endif // __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<height; i++) {
|
|
#ifdef __SSE2__
|
|
for (j=0; j<width-3; j+=4) {
|
|
sincosvalv = xsincosf(piidv*LVFU(src->h_p[i][j]));
|
|
_mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y);
|
|
_mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x);
|
|
}
|
|
for (; j<width; j++) {
|
|
sincosval = xsincosf(piid*src->h_p[i][j]);
|
|
sraa[i][j]=src->C_p[i][j]*sincosval.y;
|
|
srbb[i][j]=src->C_p[i][j]*sincosval.x;
|
|
}
|
|
#else
|
|
for (int j=0; j<width; j++) {
|
|
sincosval = xsincosf(piid*src->h_p[i][j]);
|
|
sraa[i][j]=src->C_p[i][j]*sincosval.y;
|
|
srbb[i][j]=src->C_p[i][j]*sincosval.x;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
AlignedBufferMP<double> buffer(max(src->W,src->H));
|
|
gaussHorizontal<float> (sraa, tmaa, buffer, src->W, src->H, radius);
|
|
gaussHorizontal<float> (srbb, tmbb, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmaa, tmaa, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmbb, tmbb, buffer, src->W, src->H, radius);
|
|
}
|
|
|
|
float chromave=0.0f;
|
|
|
|
#ifdef __SSE2__
|
|
if( chCurve ) {
|
|
// vectorized precalculation of the atan2 values
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(j = 0; j < width-3; j+=4)
|
|
_mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(srbb[i][j]),LVFU(sraa[i][j])));
|
|
for(; j < width; j++)
|
|
fringe[i*width+j]=xatan2f(srbb[i][j],sraa[i][j]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
float chromaChfactor = 1.0f;
|
|
#ifdef _OPENMP
|
|
#pragma omp for reduction(+:chromave)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
if (chCurve) {
|
|
#ifdef __SSE2__
|
|
// use the precalculated atan values
|
|
float HH=fringe[i*width+j];
|
|
#else
|
|
// no precalculated values without SSE => calculate
|
|
float HH=xatan2f(srbb[i][j],sraa[i][j]);
|
|
#endif
|
|
float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH)))-0.5f) * 2.0f);//get C=f(H)
|
|
if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0
|
|
chromaChfactor=1.0f+chparam;
|
|
}
|
|
float chroma = SQR(chromaChfactor*(sraa[i][j]-tmaa[i][j]))+SQR(chromaChfactor*(srbb[i][j]-tmbb[i][j]));//modulate chroma function hue
|
|
chromave += chroma;
|
|
fringe[i*width+j]=chroma;
|
|
}
|
|
}
|
|
}
|
|
|
|
chromave /= (height*width);
|
|
float threshfactor = SQR(thresh/33.f)*chromave*5.0f; // Calculated once to eliminate mult inside the next loop
|
|
|
|
// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future
|
|
#ifdef __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
__m128 sumv = _mm_set1_ps( chromave + eps2 );
|
|
__m128 onev = _mm_set1_ps( 1.0f );
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int j=0; j < width*height-3; j+=4)
|
|
_mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv));
|
|
}
|
|
for(int j=width*height - (width*height)%4; j < width*height; j++)
|
|
fringe[j] = 1.f/(fringe[j]+chromave+eps2);
|
|
#else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int j = 0; j < width*height; j++)
|
|
fringe[j] = 1.f/(fringe[j]+chromave+eps2);
|
|
#endif
|
|
|
|
// because we changed the values of fringe we also have to recalculate threshfactor
|
|
threshfactor = 1.0f/(threshfactor + chromave + eps2);
|
|
|
|
// Issue 1674:
|
|
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
|
|
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
|
|
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
|
|
// choice for the chunk_size than 16
|
|
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
int j;
|
|
for(j = 0; j < halfwin-1; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (fringe[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=0; j1<j+halfwin; j1++) {
|
|
//neighborhood average of pixels weighted by chrominance
|
|
wt = fringe[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
for(; j < width-halfwin+1; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (fringe[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
|
|
//neighborhood average of pixels weighted by chrominance
|
|
wt = fringe[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
for(; j < width; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (fringe[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<width; j1++) {
|
|
//neighborhood average of pixels weighted by chrominance
|
|
wt = fringe[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
} //end of ab channel averaging
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
int j;
|
|
__m128 interav, interbv;
|
|
__m128 piidv = _mm_set1_ps(piid);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
#ifdef __SSE2__
|
|
for(j = 0; j < width-3; j+=4) {
|
|
_mm_storeu_ps( &dst->sh_p[i][j], LVFU(src->sh_p[i][j]));
|
|
interav = LVFU(tmaa[i][j]);
|
|
interbv = LVFU(tmbb[i][j]);
|
|
_mm_storeu_ps(&dst->h_p[i][j],(xatan2f(interbv,interav))/piidv);
|
|
_mm_storeu_ps(&dst->C_p[i][j],_mm_sqrt_ps(SQRV(interbv)+SQRV(interav)));
|
|
}
|
|
for(; j < width; j++) {
|
|
dst->sh_p[i][j] = src->sh_p[i][j];
|
|
float intera = tmaa[i][j];
|
|
float interb = tmbb[i][j];
|
|
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
|
|
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
|
|
}
|
|
#else
|
|
for(int j = 0; j < width; j++) {
|
|
dst->sh_p[i][j] = src->sh_p[i][j];
|
|
float intera = tmaa[i][j];
|
|
float interb = tmbb[i][j];
|
|
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
|
|
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
for (int i=0; i<height; i++)
|
|
delete [] sraa[i];
|
|
delete [] sraa;
|
|
for (int i=0; i<height; i++)
|
|
delete [] srbb[i];
|
|
delete [] srbb;
|
|
for (int i=0; i<height; i++)
|
|
delete [] tmaa[i];
|
|
delete [] tmaa;
|
|
for (int i=0; i<height; i++)
|
|
delete [] tmbb[i];
|
|
delete [] tmbb;
|
|
|
|
if(chCurve) delete chCurve;
|
|
|
|
free(fringe);
|
|
}
|
|
|
|
SSEFUNCTION void ImProcFunctions::Badpixelscam(CieImage * src, CieImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom, int hotbad)
|
|
{
|
|
const int halfwin = ceil(2*radius)+1;
|
|
MyTime t1,t2;
|
|
t1.set();
|
|
|
|
const int width=src->W, height=src->H;
|
|
const float piid=3.14159265f/180.f;
|
|
float shfabs, shmed;
|
|
|
|
int i1, j1, tot;
|
|
const float eps = 1.0f;
|
|
const float eps2 = 0.01f;
|
|
float shsum, dirsh, norm, sum;
|
|
|
|
float** sraa;
|
|
sraa = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
sraa[i] = new float[width];
|
|
|
|
float** srbb;
|
|
srbb = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
srbb[i] = new float[width];
|
|
|
|
float** tmaa;
|
|
tmaa = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
tmaa[i] = new float[width];
|
|
|
|
float** tmbb;
|
|
tmbb = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
tmbb[i] = new float[width];
|
|
|
|
float* badpix = (float*)malloc(width*height*sizeof(float));
|
|
|
|
float** tmL;
|
|
tmL = new float*[height];
|
|
for (int i=0; i<height; i++) {
|
|
tmL[i] = new float[width];
|
|
}
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
float2 sincosval;
|
|
#ifdef __SSE2__
|
|
int j;
|
|
vfloat2 sincosvalv;
|
|
__m128 piidv = _mm_set1_ps(piid);
|
|
#endif // __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<height; i++) {
|
|
#ifdef __SSE2__
|
|
for (j=0; j<width-3; j+=4) {
|
|
sincosvalv = xsincosf(piidv*LVFU(src->h_p[i][j]));
|
|
_mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y);
|
|
_mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x);
|
|
}
|
|
for (; j<width; j++) {
|
|
sincosval = xsincosf(piid*src->h_p[i][j]);
|
|
sraa[i][j]=src->C_p[i][j]*sincosval.y;
|
|
srbb[i][j]=src->C_p[i][j]*sincosval.x;
|
|
}
|
|
#else
|
|
for (int j=0; j<width; j++) {
|
|
sincosval = xsincosf(piid*src->h_p[i][j]);
|
|
sraa[i][j]=src->C_p[i][j]*sincosval.y;
|
|
srbb[i][j]=src->C_p[i][j]*sincosval.x;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
AlignedBufferMP<double> buffer(max(src->W,src->H));
|
|
//chroma a and b
|
|
if(mode==2) {//choice of gaussian blur
|
|
gaussHorizontal<float> (sraa, tmaa, buffer, src->W, src->H, radius);
|
|
gaussHorizontal<float> (srbb, tmbb, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmaa, tmaa, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmbb, tmbb, buffer, src->W, src->H, radius);
|
|
}
|
|
//luma sh_p
|
|
gaussHorizontal<float> (src->sh_p, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts
|
|
gaussVertical<float> (tmL, tmL, buffer, src->W, src->H, 2.0);
|
|
}
|
|
|
|
if(mode==1){ //choice of median
|
|
#pragma omp parallel
|
|
{
|
|
int ip,in,jp,jn;
|
|
float pp[9],temp;
|
|
#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one
|
|
for (int i=0; i<height; i++) {
|
|
if (i<2) {ip=i+2;} else {ip=i-2;}
|
|
if (i>height-3) {in=i-2;} else {in=i+2;}
|
|
for (int j=0; j<width; j++) {
|
|
if (j<2) {jp=j+2;} else {jp=j-2;}
|
|
if (j>width-3) {jn=j-2;} else {jn=j+2;}
|
|
med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]);
|
|
}
|
|
}
|
|
#pragma omp for
|
|
for (int i=0; i<height; i++) {
|
|
if (i<2) {ip=i+2;} else {ip=i-2;}
|
|
if (i>height-3) {in=i-2;} else {in=i+2;}
|
|
for (int j=0; j<width; j++) {
|
|
if (j<2) {jp=j+2;} else {jp=j-2;}
|
|
if (j>width-3) {jn=j-2;} else {jn=j+2;}
|
|
med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//luma badpixels
|
|
const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts
|
|
const float shthr = sh_thr / 24.0f;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef __SSE2__
|
|
__m128 shfabsv, shmedv;
|
|
__m128 shthrv = _mm_set1_ps(shthr);
|
|
__m128 onev = _mm_set1_ps(1.0f);
|
|
#endif // __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp for private(shfabs, shmed,i1,j1)
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++ ) {
|
|
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
for (; j < width-5; j+=4) {
|
|
shfabsv = vabsf(LVFU(src->sh_p[i][j])-LVFU(tmL[i][j]));
|
|
shmedv = _mm_setzero_ps();
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
shmedv += vabsf(LVFU(src->sh_p[i1][j1])-LVFU(tmL[i1][j1]));
|
|
}
|
|
_mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps()));
|
|
}
|
|
for (; j < width-2; j++) {
|
|
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
#else
|
|
for (; j < width-2; j++) {
|
|
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16)
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
if (!badpix[i*width+j]) continue;
|
|
norm=0.0f;
|
|
shsum=0.0f;
|
|
sum=0.0f;
|
|
tot=0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (badpix[i1*width+j1]) continue;
|
|
sum += src->sh_p[i1][j1];
|
|
tot++;
|
|
dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps);
|
|
shsum += dirsh*src->sh_p[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
if (norm > 0.f) {
|
|
src->sh_p[i][j]=shsum/norm;
|
|
}
|
|
else {
|
|
if(tot > 0) src->sh_p[i][j]=sum / tot;
|
|
}
|
|
}
|
|
for (; j < width-2; j++) {
|
|
if (!badpix[i*width+j]) continue;
|
|
norm=0.0f;
|
|
shsum=0.0f;
|
|
sum=0.0f;
|
|
tot=0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (badpix[i1*width+j1]) continue;
|
|
sum += src->sh_p[i1][j1];
|
|
tot++;
|
|
dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps);
|
|
shsum += dirsh*src->sh_p[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
if (norm > 0.f) {
|
|
src->sh_p[i][j]=shsum/norm;
|
|
}
|
|
else {
|
|
if(tot > 0) src->sh_p[i][j]=sum / tot;
|
|
}
|
|
}
|
|
for (; j < width; j++) {
|
|
if (!badpix[i*width+j]) continue;
|
|
norm=0.0f;
|
|
shsum=0.0f;
|
|
sum=0.0f;
|
|
tot=0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (badpix[i1*width+j1]) continue;
|
|
sum += src->sh_p[i1][j1];
|
|
tot++;
|
|
dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps);
|
|
shsum += dirsh*src->sh_p[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
if (norm > 0.f) {
|
|
src->sh_p[i][j]=shsum/norm;
|
|
}
|
|
else {
|
|
if(tot > 0) src->sh_p[i][j]=sum / tot;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// end luma badpixels
|
|
|
|
|
|
// begin chroma badpixels
|
|
float chrommed=0.f;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:chrommed)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]);
|
|
chrommed += chroma;
|
|
badpix[i*width+j]=chroma;
|
|
}
|
|
}
|
|
chrommed /= (height*width);
|
|
float threshfactor = (thresh*chrommed)/33.f;
|
|
|
|
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
|
|
#ifdef __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
__m128 sumv = _mm_set1_ps( chrommed + eps2 );
|
|
__m128 onev = _mm_set1_ps( 1.0f );
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i<height; i++) {
|
|
for(j=0; j < width-3; j+=4)
|
|
_mm_storeu_ps( &badpix[i*width+j], onev/(LVFU(badpix[i*width+j])+sumv));
|
|
for(; j < width; j++)
|
|
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
|
|
}
|
|
}
|
|
#else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i<height; i++)
|
|
for(int j = 0; j < width; j++)
|
|
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
|
|
#endif
|
|
|
|
// because we changed the values of badpix we also have to recalculate threshfactor
|
|
threshfactor = 1.0f/(threshfactor + chrommed + eps2);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(j = 0; j < halfwin; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (badpix[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=0; j1<j+halfwin; j1++) {
|
|
wt = badpix[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
for(; j < width-halfwin; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (badpix[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
|
|
wt = badpix[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
for(; j < width; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (badpix[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<width; j1++) {
|
|
wt = badpix[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
float intera = tmaa[i][j];
|
|
float interb = tmbb[i][j];
|
|
float CC=sqrt(SQR(interb)+SQR(intera));
|
|
if(hotbad==0) {
|
|
if(CC < chrom && skinprot !=0.f){
|
|
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
|
|
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
|
|
}
|
|
}
|
|
else {
|
|
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
|
|
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(src != dst) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i < height; i++ )
|
|
for(int j = 0; j < width; j++)
|
|
dst->sh_p[i][j] = src->sh_p[i][j];
|
|
}
|
|
|
|
|
|
for (int i=0; i<height; i++)
|
|
delete [] sraa[i];
|
|
delete [] sraa;
|
|
for (int i=0; i<height; i++)
|
|
delete [] srbb[i];
|
|
delete [] srbb;
|
|
for (int i=0; i<height; i++)
|
|
delete [] tmaa[i];
|
|
delete [] tmaa;
|
|
for (int i=0; i<height; i++)
|
|
delete [] tmbb[i];
|
|
delete [] tmbb;
|
|
for (int i=0; i<height; i++){
|
|
delete [] tmL[i];
|
|
}
|
|
delete [] tmL;
|
|
|
|
free(badpix);
|
|
|
|
t2.set();
|
|
if( settings->verbose )
|
|
printf("Ciecam badpixels:- %d usec\n", t2.etime(t1));
|
|
|
|
|
|
}
|
|
|
|
SSEFUNCTION void ImProcFunctions::BadpixelsLab(LabImage * src, LabImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom)
|
|
{
|
|
const int halfwin = ceil(2*radius)+1;
|
|
MyTime t1,t2;
|
|
t1.set();
|
|
|
|
const int width=src->W, height=src->H;
|
|
// const float piid=3.14159265f/180.f;
|
|
float shfabs, shmed;
|
|
|
|
int i1, j1, tot;
|
|
const float eps = 1.0f;
|
|
const float eps2 = 0.01f;
|
|
float shsum, dirsh, norm, sum;
|
|
|
|
float** sraa;
|
|
sraa = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
sraa[i] = new float[width];
|
|
|
|
float** srbb;
|
|
srbb = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
srbb[i] = new float[width];
|
|
|
|
float** tmaa;
|
|
tmaa = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
tmaa[i] = new float[width];
|
|
|
|
float** tmbb;
|
|
tmbb = new float*[height];
|
|
for (int i=0; i<height; i++)
|
|
tmbb[i] = new float[width];
|
|
|
|
float* badpix = (float*)malloc(width*height*sizeof(float));
|
|
|
|
float** tmL;
|
|
tmL = new float*[height];
|
|
for (int i=0; i<height; i++) {
|
|
tmL[i] = new float[width];
|
|
}
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
// float2 sincosval;
|
|
#ifdef __SSE2__
|
|
int j;
|
|
// vfloat2 sincosvalv;
|
|
// __m128 piidv = _mm_set1_ps(piid);
|
|
#endif // __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i=0; i<height; i++) {
|
|
#ifdef __SSE2__
|
|
for (j=0; j<width-3; j+=4) {
|
|
_mm_storeu_ps(&sraa[i][j],LVFU(src->a[i][j]));
|
|
_mm_storeu_ps(&srbb[i][j],LVFU(src->b[i][j]));
|
|
}
|
|
for (; j<width; j++) {
|
|
sraa[i][j]=src->a[i][j];
|
|
srbb[i][j]=src->b[i][j];
|
|
}
|
|
#else
|
|
for (int j=0; j<width; j++) {
|
|
sraa[i][j]=src->a[i][j];
|
|
srbb[i][j]=src->b[i][j];
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
AlignedBufferMP<double> buffer(max(src->W,src->H));
|
|
//chroma a and b
|
|
if(mode>=2) {//choice of gaussian blur
|
|
gaussHorizontal<float> (sraa, tmaa, buffer, src->W, src->H, radius);
|
|
gaussHorizontal<float> (srbb, tmbb, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmaa, tmaa, buffer, src->W, src->H, radius);
|
|
gaussVertical<float> (tmbb, tmbb, buffer, src->W, src->H, radius);
|
|
}
|
|
//luma sh_p
|
|
gaussHorizontal<float> (src->L, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts
|
|
gaussVertical<float> (tmL, tmL, buffer, src->W, src->H, 2.0);
|
|
}
|
|
|
|
if(mode==1){ //choice of median
|
|
#pragma omp parallel
|
|
{
|
|
int ip,in,jp,jn;
|
|
float pp[9],temp;
|
|
#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one
|
|
for (int i=0; i<height; i++) {
|
|
if (i<2) {ip=i+2;} else {ip=i-2;}
|
|
if (i>height-3) {in=i-2;} else {in=i+2;}
|
|
for (int j=0; j<width; j++) {
|
|
if (j<2) {jp=j+2;} else {jp=j-2;}
|
|
if (j>width-3) {jn=j-2;} else {jn=j+2;}
|
|
med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]);
|
|
}
|
|
}
|
|
#pragma omp for
|
|
for (int i=0; i<height; i++) {
|
|
if (i<2) {ip=i+2;} else {ip=i-2;}
|
|
if (i>height-3) {in=i-2;} else {in=i+2;}
|
|
for (int j=0; j<width; j++) {
|
|
if (j<2) {jp=j+2;} else {jp=j-2;}
|
|
if (j>width-3) {jn=j-2;} else {jn=j+2;}
|
|
med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//luma badpixels
|
|
const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts
|
|
const float shthr = sh_thr / 24.0f;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef __SSE2__
|
|
__m128 shfabsv, shmedv;
|
|
__m128 shthrv = _mm_set1_ps(shthr);
|
|
__m128 onev = _mm_set1_ps(1.0f);
|
|
#endif // __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp for private(shfabs, shmed,i1,j1)
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
shfabs = fabs(src->L[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++ ) {
|
|
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
for (; j < width-5; j+=4) {
|
|
shfabsv = vabsf(LVFU(src->L[i][j])-LVFU(tmL[i][j]));
|
|
shmedv = _mm_setzero_ps();
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
shmedv += vabsf(LVFU(src->L[i1][j1])-LVFU(tmL[i1][j1]));
|
|
}
|
|
_mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps()));
|
|
}
|
|
for (; j < width-2; j++) {
|
|
shfabs = fabs(src->L[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
#else
|
|
for (; j < width-2; j++) {
|
|
shfabs = fabs(src->L[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
shfabs = fabs(src->L[i][j]-tmL[i][j]);
|
|
shmed=0.0f;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
|
|
}
|
|
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16)
|
|
#endif
|
|
for (int i=0; i < height; i++) {
|
|
for (j=0; j < 2; j++) {
|
|
if (!badpix[i*width+j]) continue;
|
|
norm=0.0f;
|
|
shsum=0.0f;
|
|
sum=0.0f;
|
|
tot=0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=0; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (badpix[i1*width+j1]) continue;
|
|
sum += src->L[i1][j1];
|
|
tot++;
|
|
dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps);
|
|
shsum += dirsh*src->L[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
if (norm > 0.f) {
|
|
src->L[i][j]=shsum/norm;
|
|
}
|
|
else {
|
|
if(tot > 0) src->L[i][j]=sum / tot;
|
|
}
|
|
}
|
|
for (; j < width-2; j++) {
|
|
if (!badpix[i*width+j]) continue;
|
|
norm=0.0f;
|
|
shsum=0.0f;
|
|
sum=0.0f;
|
|
tot=0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<=j+2; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (badpix[i1*width+j1]) continue;
|
|
sum += src->L[i1][j1];
|
|
tot++;
|
|
dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps);
|
|
shsum += dirsh*src->L[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
if (norm > 0.f) {
|
|
src->L[i][j]=shsum/norm;
|
|
}
|
|
else {
|
|
if(tot > 0) src->L[i][j]=sum / tot;
|
|
}
|
|
}
|
|
for (; j < width; j++) {
|
|
if (!badpix[i*width+j]) continue;
|
|
norm=0.0f;
|
|
shsum=0.0f;
|
|
sum=0.0f;
|
|
tot=0;
|
|
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
|
|
for (j1=j-2; j1<width; j1++ ) {
|
|
if (i1==i && j1==j) continue;
|
|
if (badpix[i1*width+j1]) continue;
|
|
sum += src->L[i1][j1];
|
|
tot++;
|
|
dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps);
|
|
shsum += dirsh*src->L[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
if (norm > 0.f) {
|
|
src->L[i][j]=shsum/norm;
|
|
}
|
|
else {
|
|
if(tot > 0) src->L[i][j]=sum / tot;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// end luma badpixels
|
|
|
|
if(mode==3) {
|
|
// begin chroma badpixels
|
|
float chrommed=0.f;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:chrommed)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]);
|
|
chrommed += chroma;
|
|
badpix[i*width+j]=chroma;
|
|
}
|
|
}
|
|
chrommed /= (height*width);
|
|
float threshfactor = (thresh*chrommed)/33.f;
|
|
|
|
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
|
|
#ifdef __SSE2__
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
__m128 sumv = _mm_set1_ps( chrommed + eps2 );
|
|
__m128 onev = _mm_set1_ps( 1.0f );
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i<height; i++) {
|
|
for(j=0; j < width-3; j+=4)
|
|
_mm_storeu_ps( &badpix[i*width+j], onev/(LVFU(badpix[i*width+j])+sumv));
|
|
for(; j < width; j++)
|
|
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
|
|
}
|
|
}
|
|
#else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i<height; i++)
|
|
for(int j = 0; j < width; j++)
|
|
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
|
|
#endif
|
|
|
|
// because we changed the values of badpix we also have to recalculate threshfactor
|
|
threshfactor = 1.0f/(threshfactor + chrommed + eps2);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(j = 0; j < halfwin; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (badpix[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=0; j1<j+halfwin; j1++) {
|
|
wt = badpix[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
for(; j < width-halfwin; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (badpix[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
|
|
wt = badpix[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
for(; j < width; j++) {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
|
|
if (badpix[i*width+j]<threshfactor) {
|
|
float atot=0.f;
|
|
float btot=0.f;
|
|
float norm=0.f;
|
|
float wt;
|
|
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
|
|
for (int j1=j-halfwin+1; j1<width; j1++) {
|
|
wt = badpix[i1*width+j1];
|
|
atot += wt*sraa[i1][j1];
|
|
btot += wt*srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
if(norm > 0.f){
|
|
tmaa[i][j] = (atot/norm);
|
|
tmbb[i][j] = (btot/norm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for(int i = 0; i < height; i++ ) {
|
|
for(int j = 0; j < width; j++) {
|
|
float intera = tmaa[i][j];
|
|
float interb = tmbb[i][j];
|
|
float CC=sqrt(SQR(interb/327.68)+SQR(intera/327.68f));
|
|
if(CC < chrom && skinprot !=0.f){
|
|
dst->a[i][j]=intera;
|
|
dst->b[i][j]=interb;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(src != dst) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i < height; i++ )
|
|
for(int j = 0; j < width; j++)
|
|
dst->L[i][j] = src->L[i][j];
|
|
}
|
|
|
|
|
|
for (int i=0; i<height; i++)
|
|
delete [] sraa[i];
|
|
delete [] sraa;
|
|
for (int i=0; i<height; i++)
|
|
delete [] srbb[i];
|
|
delete [] srbb;
|
|
for (int i=0; i<height; i++)
|
|
delete [] tmaa[i];
|
|
delete [] tmaa;
|
|
for (int i=0; i<height; i++)
|
|
delete [] tmbb[i];
|
|
delete [] tmbb;
|
|
for (int i=0; i<height; i++){
|
|
delete [] tmL[i];
|
|
}
|
|
delete [] tmL;
|
|
|
|
free(badpix);
|
|
|
|
t2.set();
|
|
if( settings->verbose )
|
|
printf("Lab artifacts:- %d usec\n", t2.etime(t1));
|
|
|
|
|
|
}
|
|
|
|
}
|