rawTherapee/rtengine/PF_correct_RT.cc

1490 lines
38 KiB
C++

////////////////////////////////////////////////////////////////
//
// Chromatic Aberration Auto-correction
//
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: November 24, 2010
// optimized: September 2013, Ingo Weyrich
//
// PF_correct_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#include "gauss.h"
#include "improcfun.h"
#include "sleef.c"
#include "mytime.h"
#include "../rtgui/myflatcurve.h"
#include "rt_math.h"
#include "opthelper.h"
#ifdef _OPENMP
#include <omp.h>
#endif
using namespace std;
namespace rtengine {
extern const Settings* settings;
SSEFUNCTION void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh)
{
const int halfwin = ceil(2*radius)+1;
FlatCurve* chCurve = NULL;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear)
chCurve = new FlatCurve(params->defringe.huecurve);
// local variables
const int width=src->W, height=src->H;
//temporary array to store chromaticity
float (*fringe);
fringe = (float (*)) malloc (height * width * sizeof(*fringe));
LabImage * tmp1;
tmp1 = new LabImage(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBufferMP<double> buffer(max(src->W,src->H));
gaussHorizontal<float> (src->a, tmp1->a, buffer, src->W, src->H, radius);
gaussHorizontal<float> (src->b, tmp1->b, buffer, src->W, src->H, radius);
gaussVertical<float> (tmp1->a, tmp1->a, buffer, src->W, src->H, radius);
gaussVertical<float> (tmp1->b, tmp1->b, buffer, src->W, src->H, radius);
}
float chromave=0.0f;
#ifdef __SSE2__
if( chCurve ) {
// vectorized precalculation of the atan2 values
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
for(j = 0; j < width-3; j+=4)
_mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(src->b[i][j]),LVFU(src->a[i][j])));
for(; j < width; j++)
fringe[i*width+j]=xatan2f(src->b[i][j],src->a[i][j]);
}
}
}
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.0f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan values
float HH=fringe[i*width+j];
#else
// no precalculated values without SSE => calculate
float HH=xatan2f(src->b[i][j],src->a[i][j]);
#endif
float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH)))-0.5f) * 2.0f);//get C=f(H)
if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0
chromaChfactor=1.0f+chparam;
}
float chroma = SQR(chromaChfactor*(src->a[i][j]-tmp1->a[i][j]))+SQR(chromaChfactor*(src->b[i][j]-tmp1->b[i][j]));//modulate chroma function hue
chromave += chroma;
fringe[i*width+j]=chroma;
}
}
}
chromave /= (height*width);
float threshfactor = SQR(thresh/33.f)*chromave*5.0f;
// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
__m128 sumv = _mm_set1_ps( chromave );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int j=0; j < width*height-3; j+=4)
_mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv));
}
for(int j=width*height - (width*height)%4; j < width*height; j++)
fringe[j] = 1.f/(fringe[j]+chromave);
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int j = 0; j < width*height; j++)
fringe[j] = 1.f/(fringe[j]+chromave);
#endif
// because we changed the values of fringe we also have to recalculate threshfactor
threshfactor = 1.0f/(threshfactor + chromave);
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
int j;
for(j = 0; j < halfwin-1; j++) {
tmp1->a[i][j] = src->a[i][j];
tmp1->b[i][j] = src->b[i][j];
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
if (fringe[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=0; j1<j+halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1*width+j1];
atot += wt*src->a[i1][j1];
btot += wt*src->b[i1][j1];
norm += wt;
}
tmp1->a[i][j] = atot/norm;
tmp1->b[i][j] = btot/norm;
}
}
for(; j < width-halfwin+1; j++) {
tmp1->a[i][j] = src->a[i][j];
tmp1->b[i][j] = src->b[i][j];
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
if (fringe[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1*width+j1];
atot += wt*src->a[i1][j1];
btot += wt*src->b[i1][j1];
norm += wt;
}
tmp1->a[i][j] = atot/norm;
tmp1->b[i][j] = btot/norm;
}
}
for(; j < width; j++) {
tmp1->a[i][j] = src->a[i][j];
tmp1->b[i][j] = src->b[i][j];
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
if (fringe[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<width; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1*width+j1];
atot += wt*src->a[i1][j1];
btot += wt*src->b[i1][j1];
norm += wt;
}
tmp1->a[i][j] = atot/norm;
tmp1->b[i][j] = btot/norm;
}
}
}//end of ab channel averaging
if(src != dst)
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
dst->L[i][j] = src->L[i][j];
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
dst->a[i][j] = tmp1->a[i][j];
dst->b[i][j] = tmp1->b[i][j];
}
}
delete tmp1;
if(chCurve) delete chCurve;
free(fringe);
}
SSEFUNCTION void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh)
{
const int halfwin = ceil(2*radius)+1;
FlatCurve* chCurve = NULL;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear)
chCurve = new FlatCurve(params->defringe.huecurve);
// local variables
const int width=src->W, height=src->H;
const float piid=3.14159265f/180.f;
const float eps2=0.01f;
//temporary array to store chromaticity
float (*fringe);
fringe = (float (*)) malloc (height * width * sizeof(*fringe));
float** sraa;
sraa = new float*[height];
for (int i=0; i<height; i++)
sraa[i] = new float[width];
float** srbb;
srbb = new float*[height];
for (int i=0; i<height; i++)
srbb[i] = new float[width];
float** tmaa;
tmaa = new float*[height];
for (int i=0; i<height; i++)
tmaa[i] = new float[width];
float** tmbb;
tmbb = new float*[height];
for (int i=0; i<height; i++)
tmbb[i] = new float[width];
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float2 sincosval;
#ifdef __SSE2__
int j;
vfloat2 sincosvalv;
__m128 piidv = _mm_set1_ps(piid);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<height; i++) {
#ifdef __SSE2__
for (j=0; j<width-3; j+=4) {
sincosvalv = xsincosf(piidv*LVFU(src->h_p[i][j]));
_mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y);
_mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x);
}
for (; j<width; j++) {
sincosval = xsincosf(piid*src->h_p[i][j]);
sraa[i][j]=src->C_p[i][j]*sincosval.y;
srbb[i][j]=src->C_p[i][j]*sincosval.x;
}
#else
for (int j=0; j<width; j++) {
sincosval = xsincosf(piid*src->h_p[i][j]);
sraa[i][j]=src->C_p[i][j]*sincosval.y;
srbb[i][j]=src->C_p[i][j]*sincosval.x;
}
#endif
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBufferMP<double> buffer(max(src->W,src->H));
gaussHorizontal<float> (sraa, tmaa, buffer, src->W, src->H, radius);
gaussHorizontal<float> (srbb, tmbb, buffer, src->W, src->H, radius);
gaussVertical<float> (tmaa, tmaa, buffer, src->W, src->H, radius);
gaussVertical<float> (tmbb, tmbb, buffer, src->W, src->H, radius);
}
float chromave=0.0f;
#ifdef __SSE2__
if( chCurve ) {
// vectorized precalculation of the atan2 values
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
for(j = 0; j < width-3; j+=4)
_mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(srbb[i][j]),LVFU(sraa[i][j])));
for(; j < width; j++)
fringe[i*width+j]=xatan2f(srbb[i][j],sraa[i][j]);
}
}
}
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.0f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan values
float HH=fringe[i*width+j];
#else
// no precalculated values without SSE => calculate
float HH=xatan2f(srbb[i][j],sraa[i][j]);
#endif
float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH)))-0.5f) * 2.0f);//get C=f(H)
if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0
chromaChfactor=1.0f+chparam;
}
float chroma = SQR(chromaChfactor*(sraa[i][j]-tmaa[i][j]))+SQR(chromaChfactor*(srbb[i][j]-tmbb[i][j]));//modulate chroma function hue
chromave += chroma;
fringe[i*width+j]=chroma;
}
}
}
chromave /= (height*width);
float threshfactor = SQR(thresh/33.f)*chromave*5.0f; // Calculated once to eliminate mult inside the next loop
// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
__m128 sumv = _mm_set1_ps( chromave + eps2 );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int j=0; j < width*height-3; j+=4)
_mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv));
}
for(int j=width*height - (width*height)%4; j < width*height; j++)
fringe[j] = 1.f/(fringe[j]+chromave+eps2);
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int j = 0; j < width*height; j++)
fringe[j] = 1.f/(fringe[j]+chromave+eps2);
#endif
// because we changed the values of fringe we also have to recalculate threshfactor
threshfactor = 1.0f/(threshfactor + chromave + eps2);
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
int j;
for(j = 0; j < halfwin-1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=0; j1<j+halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
for(; j < width-halfwin+1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
for(; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<width; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
} //end of ab channel averaging
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
int j;
__m128 interav, interbv;
__m128 piidv = _mm_set1_ps(piid);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
#ifdef __SSE2__
for(j = 0; j < width-3; j+=4) {
_mm_storeu_ps( &dst->sh_p[i][j], LVFU(src->sh_p[i][j]));
interav = LVFU(tmaa[i][j]);
interbv = LVFU(tmbb[i][j]);
_mm_storeu_ps(&dst->h_p[i][j],(xatan2f(interbv,interav))/piidv);
_mm_storeu_ps(&dst->C_p[i][j],_mm_sqrt_ps(SQRV(interbv)+SQRV(interav)));
}
for(; j < width; j++) {
dst->sh_p[i][j] = src->sh_p[i][j];
float intera = tmaa[i][j];
float interb = tmbb[i][j];
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
}
#else
for(int j = 0; j < width; j++) {
dst->sh_p[i][j] = src->sh_p[i][j];
float intera = tmaa[i][j];
float interb = tmbb[i][j];
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
}
#endif
}
}
for (int i=0; i<height; i++)
delete [] sraa[i];
delete [] sraa;
for (int i=0; i<height; i++)
delete [] srbb[i];
delete [] srbb;
for (int i=0; i<height; i++)
delete [] tmaa[i];
delete [] tmaa;
for (int i=0; i<height; i++)
delete [] tmbb[i];
delete [] tmbb;
if(chCurve) delete chCurve;
free(fringe);
}
SSEFUNCTION void ImProcFunctions::Badpixelscam(CieImage * src, CieImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom, int hotbad)
{
const int halfwin = ceil(2*radius)+1;
MyTime t1,t2;
t1.set();
const int width=src->W, height=src->H;
const float piid=3.14159265f/180.f;
float shfabs, shmed;
int i1, j1, tot;
const float eps = 1.0f;
const float eps2 = 0.01f;
float shsum, dirsh, norm, sum;
float** sraa;
sraa = new float*[height];
for (int i=0; i<height; i++)
sraa[i] = new float[width];
float** srbb;
srbb = new float*[height];
for (int i=0; i<height; i++)
srbb[i] = new float[width];
float** tmaa;
tmaa = new float*[height];
for (int i=0; i<height; i++)
tmaa[i] = new float[width];
float** tmbb;
tmbb = new float*[height];
for (int i=0; i<height; i++)
tmbb[i] = new float[width];
float* badpix = (float*)malloc(width*height*sizeof(float));
float** tmL;
tmL = new float*[height];
for (int i=0; i<height; i++) {
tmL[i] = new float[width];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float2 sincosval;
#ifdef __SSE2__
int j;
vfloat2 sincosvalv;
__m128 piidv = _mm_set1_ps(piid);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<height; i++) {
#ifdef __SSE2__
for (j=0; j<width-3; j+=4) {
sincosvalv = xsincosf(piidv*LVFU(src->h_p[i][j]));
_mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y);
_mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x);
}
for (; j<width; j++) {
sincosval = xsincosf(piid*src->h_p[i][j]);
sraa[i][j]=src->C_p[i][j]*sincosval.y;
srbb[i][j]=src->C_p[i][j]*sincosval.x;
}
#else
for (int j=0; j<width; j++) {
sincosval = xsincosf(piid*src->h_p[i][j]);
sraa[i][j]=src->C_p[i][j]*sincosval.y;
srbb[i][j]=src->C_p[i][j]*sincosval.x;
}
#endif
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBufferMP<double> buffer(max(src->W,src->H));
//chroma a and b
if(mode==2) {//choice of gaussian blur
gaussHorizontal<float> (sraa, tmaa, buffer, src->W, src->H, radius);
gaussHorizontal<float> (srbb, tmbb, buffer, src->W, src->H, radius);
gaussVertical<float> (tmaa, tmaa, buffer, src->W, src->H, radius);
gaussVertical<float> (tmbb, tmbb, buffer, src->W, src->H, radius);
}
//luma sh_p
gaussHorizontal<float> (src->sh_p, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts
gaussVertical<float> (tmL, tmL, buffer, src->W, src->H, 2.0);
}
if(mode==1){ //choice of median
#pragma omp parallel
{
int ip,in,jp,jn;
float pp[9],temp;
#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one
for (int i=0; i<height; i++) {
if (i<2) {ip=i+2;} else {ip=i-2;}
if (i>height-3) {in=i-2;} else {in=i+2;}
for (int j=0; j<width; j++) {
if (j<2) {jp=j+2;} else {jp=j-2;}
if (j>width-3) {jn=j-2;} else {jn=j+2;}
med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]);
}
}
#pragma omp for
for (int i=0; i<height; i++) {
if (i<2) {ip=i+2;} else {ip=i-2;}
if (i>height-3) {in=i-2;} else {in=i+2;}
for (int j=0; j<width; j++) {
if (j<2) {jp=j+2;} else {jp=j-2;}
if (j>width-3) {jn=j-2;} else {jn=j+2;}
med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]);
}
}
}
}
//luma badpixels
const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts
const float shthr = sh_thr / 24.0f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef __SSE2__
__m128 shfabsv, shmedv;
__m128 shthrv = _mm_set1_ps(shthr);
__m128 onev = _mm_set1_ps(1.0f);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for private(shfabs, shmed,i1,j1)
#endif
for (int i=0; i < height; i++) {
for (j=0; j < 2; j++) {
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=0; j1<=j+2; j1++ ) {
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
#ifdef __SSE2__
for (; j < width-5; j+=4) {
shfabsv = vabsf(LVFU(src->sh_p[i][j])-LVFU(tmL[i][j]));
shmedv = _mm_setzero_ps();
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
shmedv += vabsf(LVFU(src->sh_p[i1][j1])-LVFU(tmL[i1][j1]));
}
_mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps()));
}
for (; j < width-2; j++) {
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
#else
for (; j < width-2; j++) {
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
#endif
for (; j < width; j++) {
shfabs = fabs(src->sh_p[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<width; j1++ ) {
shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16)
#endif
for (int i=0; i < height; i++) {
for (j=0; j < 2; j++) {
if (!badpix[i*width+j]) continue;
norm=0.0f;
shsum=0.0f;
sum=0.0f;
tot=0;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=0; j1<=j+2; j1++ ) {
if (i1==i && j1==j) continue;
if (badpix[i1*width+j1]) continue;
sum += src->sh_p[i1][j1];
tot++;
dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps);
shsum += dirsh*src->sh_p[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->sh_p[i][j]=shsum/norm;
}
else {
if(tot > 0) src->sh_p[i][j]=sum / tot;
}
}
for (; j < width-2; j++) {
if (!badpix[i*width+j]) continue;
norm=0.0f;
shsum=0.0f;
sum=0.0f;
tot=0;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
if (i1==i && j1==j) continue;
if (badpix[i1*width+j1]) continue;
sum += src->sh_p[i1][j1];
tot++;
dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps);
shsum += dirsh*src->sh_p[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->sh_p[i][j]=shsum/norm;
}
else {
if(tot > 0) src->sh_p[i][j]=sum / tot;
}
}
for (; j < width; j++) {
if (!badpix[i*width+j]) continue;
norm=0.0f;
shsum=0.0f;
sum=0.0f;
tot=0;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<width; j1++ ) {
if (i1==i && j1==j) continue;
if (badpix[i1*width+j1]) continue;
sum += src->sh_p[i1][j1];
tot++;
dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps);
shsum += dirsh*src->sh_p[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->sh_p[i][j]=shsum/norm;
}
else {
if(tot > 0) src->sh_p[i][j]=sum / tot;
}
}
}
}
// end luma badpixels
// begin chroma badpixels
float chrommed=0.f;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:chrommed)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]);
chrommed += chroma;
badpix[i*width+j]=chroma;
}
}
chrommed /= (height*width);
float threshfactor = (thresh*chrommed)/33.f;
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
__m128 sumv = _mm_set1_ps( chrommed + eps2 );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i<height; i++) {
for(j=0; j < width-3; j+=4)
_mm_storeu_ps( &badpix[i*width+j], onev/(LVFU(badpix[i*width+j])+sumv));
for(; j < width; j++)
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
}
}
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i<height; i++)
for(int j = 0; j < width; j++)
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
#endif
// because we changed the values of badpix we also have to recalculate threshfactor
threshfactor = 1.0f/(threshfactor + chrommed + eps2);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
for(j = 0; j < halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=0; j1<j+halfwin; j1++) {
wt = badpix[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
for(; j < width-halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
wt = badpix[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
for(; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<width; j1++) {
wt = badpix[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float intera = tmaa[i][j];
float interb = tmbb[i][j];
float CC=sqrt(SQR(interb)+SQR(intera));
if(hotbad==0) {
if(CC < chrom && skinprot !=0.f){
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
}
}
else {
dst->h_p[i][j]=(xatan2f(interb,intera))/piid;
dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera));
}
}
}
}
if(src != dst) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ )
for(int j = 0; j < width; j++)
dst->sh_p[i][j] = src->sh_p[i][j];
}
for (int i=0; i<height; i++)
delete [] sraa[i];
delete [] sraa;
for (int i=0; i<height; i++)
delete [] srbb[i];
delete [] srbb;
for (int i=0; i<height; i++)
delete [] tmaa[i];
delete [] tmaa;
for (int i=0; i<height; i++)
delete [] tmbb[i];
delete [] tmbb;
for (int i=0; i<height; i++){
delete [] tmL[i];
}
delete [] tmL;
free(badpix);
t2.set();
if( settings->verbose )
printf("Ciecam badpixels:- %d usec\n", t2.etime(t1));
}
SSEFUNCTION void ImProcFunctions::BadpixelsLab(LabImage * src, LabImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom)
{
const int halfwin = ceil(2*radius)+1;
MyTime t1,t2;
t1.set();
const int width=src->W, height=src->H;
// const float piid=3.14159265f/180.f;
float shfabs, shmed;
int i1, j1, tot;
const float eps = 1.0f;
const float eps2 = 0.01f;
float shsum, dirsh, norm, sum;
float** sraa;
sraa = new float*[height];
for (int i=0; i<height; i++)
sraa[i] = new float[width];
float** srbb;
srbb = new float*[height];
for (int i=0; i<height; i++)
srbb[i] = new float[width];
float** tmaa;
tmaa = new float*[height];
for (int i=0; i<height; i++)
tmaa[i] = new float[width];
float** tmbb;
tmbb = new float*[height];
for (int i=0; i<height; i++)
tmbb[i] = new float[width];
float* badpix = (float*)malloc(width*height*sizeof(float));
float** tmL;
tmL = new float*[height];
for (int i=0; i<height; i++) {
tmL[i] = new float[width];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// float2 sincosval;
#ifdef __SSE2__
int j;
// vfloat2 sincosvalv;
// __m128 piidv = _mm_set1_ps(piid);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<height; i++) {
#ifdef __SSE2__
for (j=0; j<width-3; j+=4) {
_mm_storeu_ps(&sraa[i][j],LVFU(src->a[i][j]));
_mm_storeu_ps(&srbb[i][j],LVFU(src->b[i][j]));
}
for (; j<width; j++) {
sraa[i][j]=src->a[i][j];
srbb[i][j]=src->b[i][j];
}
#else
for (int j=0; j<width; j++) {
sraa[i][j]=src->a[i][j];
srbb[i][j]=src->b[i][j];
}
#endif
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBufferMP<double> buffer(max(src->W,src->H));
//chroma a and b
if(mode>=2) {//choice of gaussian blur
gaussHorizontal<float> (sraa, tmaa, buffer, src->W, src->H, radius);
gaussHorizontal<float> (srbb, tmbb, buffer, src->W, src->H, radius);
gaussVertical<float> (tmaa, tmaa, buffer, src->W, src->H, radius);
gaussVertical<float> (tmbb, tmbb, buffer, src->W, src->H, radius);
}
//luma sh_p
gaussHorizontal<float> (src->L, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts
gaussVertical<float> (tmL, tmL, buffer, src->W, src->H, 2.0);
}
if(mode==1){ //choice of median
#pragma omp parallel
{
int ip,in,jp,jn;
float pp[9],temp;
#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one
for (int i=0; i<height; i++) {
if (i<2) {ip=i+2;} else {ip=i-2;}
if (i>height-3) {in=i-2;} else {in=i+2;}
for (int j=0; j<width; j++) {
if (j<2) {jp=j+2;} else {jp=j-2;}
if (j>width-3) {jn=j-2;} else {jn=j+2;}
med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]);
}
}
#pragma omp for
for (int i=0; i<height; i++) {
if (i<2) {ip=i+2;} else {ip=i-2;}
if (i>height-3) {in=i-2;} else {in=i+2;}
for (int j=0; j<width; j++) {
if (j<2) {jp=j+2;} else {jp=j-2;}
if (j>width-3) {jn=j-2;} else {jn=j+2;}
med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]);
}
}
}
}
//luma badpixels
const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts
const float shthr = sh_thr / 24.0f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef __SSE2__
__m128 shfabsv, shmedv;
__m128 shthrv = _mm_set1_ps(shthr);
__m128 onev = _mm_set1_ps(1.0f);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for private(shfabs, shmed,i1,j1)
#endif
for (int i=0; i < height; i++) {
for (j=0; j < 2; j++) {
shfabs = fabs(src->L[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=0; j1<=j+2; j1++ ) {
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
#ifdef __SSE2__
for (; j < width-5; j+=4) {
shfabsv = vabsf(LVFU(src->L[i][j])-LVFU(tmL[i][j]));
shmedv = _mm_setzero_ps();
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
shmedv += vabsf(LVFU(src->L[i1][j1])-LVFU(tmL[i1][j1]));
}
_mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps()));
}
for (; j < width-2; j++) {
shfabs = fabs(src->L[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
#else
for (; j < width-2; j++) {
shfabs = fabs(src->L[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
#endif
for (; j < width; j++) {
shfabs = fabs(src->L[i][j]-tmL[i][j]);
shmed=0.0f;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<width; j1++ ) {
shmed += fabs(src->L[i1][j1]-tmL[i1][j1]);
}
badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr));
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16)
#endif
for (int i=0; i < height; i++) {
for (j=0; j < 2; j++) {
if (!badpix[i*width+j]) continue;
norm=0.0f;
shsum=0.0f;
sum=0.0f;
tot=0;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=0; j1<=j+2; j1++ ) {
if (i1==i && j1==j) continue;
if (badpix[i1*width+j1]) continue;
sum += src->L[i1][j1];
tot++;
dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps);
shsum += dirsh*src->L[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->L[i][j]=shsum/norm;
}
else {
if(tot > 0) src->L[i][j]=sum / tot;
}
}
for (; j < width-2; j++) {
if (!badpix[i*width+j]) continue;
norm=0.0f;
shsum=0.0f;
sum=0.0f;
tot=0;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<=j+2; j1++ ) {
if (i1==i && j1==j) continue;
if (badpix[i1*width+j1]) continue;
sum += src->L[i1][j1];
tot++;
dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps);
shsum += dirsh*src->L[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->L[i][j]=shsum/norm;
}
else {
if(tot > 0) src->L[i][j]=sum / tot;
}
}
for (; j < width; j++) {
if (!badpix[i*width+j]) continue;
norm=0.0f;
shsum=0.0f;
sum=0.0f;
tot=0;
for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ )
for (j1=j-2; j1<width; j1++ ) {
if (i1==i && j1==j) continue;
if (badpix[i1*width+j1]) continue;
sum += src->L[i1][j1];
tot++;
dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps);
shsum += dirsh*src->L[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->L[i][j]=shsum/norm;
}
else {
if(tot > 0) src->L[i][j]=sum / tot;
}
}
}
}
// end luma badpixels
if(mode==3) {
// begin chroma badpixels
float chrommed=0.f;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:chrommed)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]);
chrommed += chroma;
badpix[i*width+j]=chroma;
}
}
chrommed /= (height*width);
float threshfactor = (thresh*chrommed)/33.f;
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
__m128 sumv = _mm_set1_ps( chrommed + eps2 );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i<height; i++) {
for(j=0; j < width-3; j+=4)
_mm_storeu_ps( &badpix[i*width+j], onev/(LVFU(badpix[i*width+j])+sumv));
for(; j < width; j++)
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
}
}
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i<height; i++)
for(int j = 0; j < width; j++)
badpix[i*width+j] = 1.f/(badpix[i*width+j]+chrommed+eps2);
#endif
// because we changed the values of badpix we also have to recalculate threshfactor
threshfactor = 1.0f/(threshfactor + chrommed + eps2);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
for(j = 0; j < halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=0; j1<j+halfwin; j1++) {
wt = badpix[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
for(; j < width-halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<j+halfwin; j1++) {
wt = badpix[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
for(; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i*width+j]<threshfactor) {
float atot=0.f;
float btot=0.f;
float norm=0.f;
float wt;
for (int i1=max(0,i-halfwin+1); i1<min(height,i+halfwin); i1++)
for (int j1=j-halfwin+1; j1<width; j1++) {
wt = badpix[i1*width+j1];
atot += wt*sraa[i1][j1];
btot += wt*srbb[i1][j1];
norm += wt;
}
if(norm > 0.f){
tmaa[i][j] = (atot/norm);
tmbb[i][j] = (btot/norm);
}
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float intera = tmaa[i][j];
float interb = tmbb[i][j];
float CC=sqrt(SQR(interb/327.68)+SQR(intera/327.68f));
if(CC < chrom && skinprot !=0.f){
dst->a[i][j]=intera;
dst->b[i][j]=interb;
}
}
}
}
}
if(src != dst) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ )
for(int j = 0; j < width; j++)
dst->L[i][j] = src->L[i][j];
}
for (int i=0; i<height; i++)
delete [] sraa[i];
delete [] sraa;
for (int i=0; i<height; i++)
delete [] srbb[i];
delete [] srbb;
for (int i=0; i<height; i++)
delete [] tmaa[i];
delete [] tmaa;
for (int i=0; i<height; i++)
delete [] tmbb[i];
delete [] tmbb;
for (int i=0; i<height; i++){
delete [] tmL[i];
}
delete [] tmL;
free(badpix);
t2.set();
if( settings->verbose )
printf("Lab artifacts:- %d usec\n", t2.etime(t1));
}
}