698 lines
22 KiB
C++
698 lines
22 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* © 2010 Emil Martinec <ejmartin@uchicago.edu>
|
|
*
|
|
*/
|
|
|
|
#include <cstddef>
|
|
#include <cmath>
|
|
#include "curves.h"
|
|
#include "labimage.h"
|
|
#include "color.h"
|
|
#include "mytime.h"
|
|
#include "improcfun.h"
|
|
#include "rawimagesource.h"
|
|
#include "array2D.h"
|
|
#include "rt_math.h"
|
|
#include "opthelper.h"
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
#define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0)
|
|
|
|
#define RANGEFN(i) ((1000.0f / (i + 1000.0f)))
|
|
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
|
|
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) )
|
|
|
|
namespace rtengine {
|
|
|
|
static const int maxlevel = 6;
|
|
static const float noise = 2000;
|
|
|
|
//sequence of scales
|
|
static const int scales[6] = {1,2,4,8,16,32};
|
|
extern const Settings* settings;
|
|
|
|
//sequence of scales
|
|
|
|
|
|
SSEFUNCTION void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b,const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
|
|
{
|
|
int lastlevel=maxlevel;
|
|
if(settings->verbose) printf("Dirpyr scaleprev=%i\n",scaleprev);
|
|
float atten123=(float) settings->level123_cbdl;
|
|
if(atten123 > 50.f) atten123=50.f;
|
|
if(atten123 < 0.f) atten123=0.f;
|
|
float atten0=(float) settings->level0_cbdl;
|
|
if(atten0 > 40.f) atten123=40.f;
|
|
if(atten0 < 0.f) atten0=0.f;
|
|
|
|
if((t_r-t_l)<0.55f)
|
|
t_l = t_r + 0.55f;//avoid too small range
|
|
|
|
|
|
while (lastlevel>0 && fabs(mult[lastlevel-1]-1)<0.001) {
|
|
lastlevel--;
|
|
//printf("last level to process %d \n",lastlevel);
|
|
}
|
|
if (lastlevel==0) return;
|
|
|
|
int level;
|
|
float multi[6]={1.f,1.f,1.f,1.f,1.f,1.f};
|
|
float scalefl[6];
|
|
|
|
for(int lv=0;lv<6;lv++) {
|
|
scalefl[lv]= ((float) scales[lv])/(float) scaleprev;
|
|
if(lv>=1) {if(scalefl[lv] < 1.f) multi[lv] = (atten123*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}//modulate action if zoom < 100%
|
|
else {if(scalefl[lv] < 1.f) multi[lv] = (atten0*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}//modulate action if zoom < 100%
|
|
|
|
}
|
|
if(settings->verbose) printf("CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n",multi[0],multi[1],multi[2],multi[3],multi[4],multi[5]);
|
|
|
|
multi_array2D<float,maxlevel> dirpyrlo (srcwidth, srcheight);
|
|
|
|
level = 0;
|
|
|
|
//int thresh = 100 * mult[5];
|
|
int scale = (int)(scales[level])/scaleprev;
|
|
if(scale < 1) scale=1;
|
|
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
|
|
|
|
level = 1;
|
|
|
|
while(level < lastlevel)
|
|
{
|
|
|
|
scale = (int)(scales[level])/scaleprev;
|
|
if(scale < 1) scale=1;
|
|
|
|
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale);
|
|
|
|
level ++;
|
|
}
|
|
|
|
float **tmpHue,**tmpChr;
|
|
if(skinprot != 0.f) {
|
|
// precalculate hue and chroma, use SSE, if available
|
|
// by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel()
|
|
// but we need two additional buffers for this preprocessing
|
|
tmpHue = new float*[srcheight];
|
|
for (int i=0; i<srcheight; i++) {
|
|
tmpHue[i] = new float[srcwidth];
|
|
}
|
|
#ifdef __SSE2__
|
|
#pragma omp parallel for
|
|
for(int i=0;i<srcheight;i++) {
|
|
int j;
|
|
for(j=0;j<srcwidth-3;j+=4) {
|
|
_mm_storeu_ps(&tmpHue[i][j],xatan2f(LVFU(l_b[i][j]),LVFU(l_a[i][j])));
|
|
}
|
|
for(;j<srcwidth;j++) {
|
|
tmpHue[i][j] = xatan2f(l_b[i][j],l_a[i][j]);
|
|
}
|
|
}
|
|
#else
|
|
#pragma omp parallel for
|
|
for(int i=0;i<srcheight;i++) {
|
|
for(int j=0;j<srcwidth;j++) {
|
|
tmpHue[i][j] = xatan2f(l_b[i][j],l_a[i][j]);
|
|
}
|
|
}
|
|
#endif
|
|
tmpChr = new float*[srcheight];
|
|
for (int i=0; i<srcheight; i++) {
|
|
tmpChr[i] = new float[srcwidth];
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
#pragma omp parallel
|
|
{
|
|
__m128 div = _mm_set1_ps(327.68f);
|
|
#pragma omp for
|
|
for(int i=0;i<srcheight;i++) {
|
|
int j;
|
|
for(j=0;j<srcwidth-3;j+=4) {
|
|
_mm_storeu_ps(&tmpChr[i][j], _mm_sqrt_ps(SQRV(LVFU(l_b[i][j]))+SQRV(LVFU(l_a[i][j])))/div);
|
|
}
|
|
for(;j<srcwidth;j++) {
|
|
tmpChr[i][j] = sqrtf(SQR((l_b[i][j]))+SQR((l_a[i][j])))/327.68f;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#pragma omp parallel for
|
|
for(int i=0;i<srcheight;i++) {
|
|
for(int j=0;j<srcwidth;j++) {
|
|
tmpChr[i][j] = sqrtf(SQR((l_b[i][j]))+SQR((l_a[i][j])))/327.68f;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float ** buffer = dirpyrlo[lastlevel-1];
|
|
|
|
for(int level = lastlevel - 1; level > 0; level--)
|
|
{
|
|
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice );
|
|
}
|
|
|
|
scale = scales[0];
|
|
|
|
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice );
|
|
|
|
if(skinprot != 0.f) {
|
|
for (int i=0; i<srcheight; i++)
|
|
delete [] tmpChr[i];
|
|
delete [] tmpChr;
|
|
for (int i=0; i<srcheight; i++)
|
|
delete [] tmpHue[i];
|
|
delete [] tmpHue;
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
#pragma omp parallel for
|
|
for (int i=0; i<srcheight; i++)
|
|
for (int j=0; j<srcwidth; j++) {
|
|
dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ImProcFunctions :: dirpyr_equalizercam (CieImage *ncie, float ** src, float ** dst, int srcwidth, int srcheight, float ** h_p, float ** C_p, const double * mult, const double dirpyrThreshold, const double skinprot, bool execdir, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
|
|
{
|
|
int lastlevel=maxlevel;
|
|
if(settings->verbose) printf("CAM dirpyr scaleprev=%i\n",scaleprev);
|
|
float atten123=(float) settings->level123_cbdl;
|
|
if(atten123 > 50.f) atten123=50.f;
|
|
if(atten123 < 0.f) atten123=0.f;
|
|
// printf("atten=%f\n",atten);
|
|
float atten0=(float) settings->level0_cbdl;
|
|
if(atten0 > 40.f) atten123=40.f;
|
|
if(atten0 < 0.f) atten0=0.f;
|
|
|
|
if((t_r-t_l)<0.55f)
|
|
t_l = t_r + 0.55f;//avoid too small range
|
|
|
|
while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) {
|
|
lastlevel--;
|
|
//printf("last level to process %d \n",lastlevel);
|
|
}
|
|
if (lastlevel==0) return;
|
|
|
|
int level;
|
|
|
|
float multi[6]={1.f,1.f,1.f,1.f,1.f,1.f};
|
|
float scalefl[6];
|
|
|
|
for(int lv=0;lv<6;lv++) {
|
|
scalefl[lv]= ((float) scales[lv])/(float) scaleprev;
|
|
// if(scalefl[lv] < 1.f) multi[lv] = 1.f; else multi[lv]=(float) mult[lv];
|
|
if (lv>=1) {if(scalefl[lv] < 1.f) multi[lv] = (atten123*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}
|
|
else {if(scalefl[lv] < 1.f) multi[lv] = (atten0*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}
|
|
|
|
|
|
}
|
|
if(settings->verbose) printf("CAM CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n",multi[0],multi[1],multi[2],multi[3],multi[4],multi[5]);
|
|
|
|
|
|
|
|
|
|
multi_array2D<float,maxlevel> dirpyrlo (srcwidth, srcheight);
|
|
|
|
level = 0;
|
|
|
|
int scale = (int)(scales[level])/scaleprev;
|
|
if(scale < 1) scale=1;
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
|
|
|
|
level = 1;
|
|
|
|
while(level < lastlevel)
|
|
{
|
|
scale = (int)(scales[level])/scaleprev;
|
|
if(scale < 1) scale=1;
|
|
|
|
dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale);
|
|
|
|
level ++;
|
|
}
|
|
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float ** buffer = dirpyrlo[lastlevel-1];
|
|
|
|
for(int level = lastlevel - 1; level > 0; level--)
|
|
{
|
|
idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, skinprot, b_l,t_l,t_r);
|
|
}
|
|
|
|
|
|
scale = scales[0];
|
|
|
|
idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l,t_l,t_r);
|
|
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
if(execdir){
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i=0; i<srcheight; i++)
|
|
for (int j=0; j<srcwidth; j++) {
|
|
if(ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f)
|
|
dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary?
|
|
else
|
|
dst[i][j]=src[i][j];
|
|
}
|
|
}
|
|
else
|
|
for (int i=0; i<srcheight; i++)
|
|
for (int j=0; j<srcwidth; j++) {
|
|
dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary?
|
|
}
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
}
|
|
|
|
|
|
SSEFUNCTION void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale)
|
|
{
|
|
//scale is spacing of directional averaging weights
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// calculate weights, compute directionally weighted average
|
|
|
|
if(level > 1) {
|
|
//generate domain kernel
|
|
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
|
|
// int domker[5][5] = {{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1}};
|
|
static const int halfwin=2;
|
|
const int scalewin = halfwin*scale;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
__m128 thousandv = _mm_set1_ps( 1000.0f );
|
|
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
|
// multiplied each value of domkerv by 1000 to avoid multiplication by 1000 inside the loop
|
|
float domkerv[5][5][4] __attribute__ ((aligned (16))) = {{{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000}}};
|
|
#endif // __SSE2__
|
|
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for //schedule (dynamic,8)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
float dirwt;
|
|
for(j = 0; j < scalewin; j++) {
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
|
|
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
|
|
for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) {
|
|
//printf("i=%d ",(inbr-i)/scale+halfwin);
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
#ifdef __SSE2__
|
|
for(; j < width-scalewin-3; j+=4)
|
|
{
|
|
valv = _mm_setzero_ps();
|
|
normv = _mm_setzero_ps();
|
|
dftemp1v = LVFU(data_fine[i][j]);
|
|
for(int inbr=MAX(0,i-scalewin); inbr<=MIN(height-1,i+scalewin); inbr+=scale) {
|
|
int indexihlp = (inbr-i)/scale+halfwin;
|
|
for (int jnbr=j-scalewin, indexjhlp = 0; jnbr<=j+scalewin; jnbr+=scale,indexjhlp++) {
|
|
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
|
dirwtv = _mm_load_ps((float*)&domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v-dftemp2v) + thousandv);
|
|
valv += dirwtv*dftemp2v;
|
|
normv += dirwtv;
|
|
}
|
|
}
|
|
_mm_storeu_ps( &data_coarse[i][j],valv/normv);//low pass filter
|
|
}
|
|
for(; j < width-scalewin; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
|
|
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
#else
|
|
|
|
for(; j < width-scalewin; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
|
|
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
#endif
|
|
for(; j < width; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) {
|
|
for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) {
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
}
|
|
}
|
|
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
|
|
// const int scalewin = scale;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
__m128 thousandv = _mm_set1_ps( 1000.0f );
|
|
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
|
#endif // __SSE2__
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
float dirwt;
|
|
for(j = 0; j < scale; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
|
|
for (int jnbr=max(0,j-scale); jnbr<=j+scale; jnbr+=scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
#ifdef __SSE2__
|
|
for(; j < width-scale-3; j+=4)
|
|
{
|
|
valv = _mm_setzero_ps();
|
|
normv = _mm_setzero_ps();
|
|
dftemp1v = LVFU(data_fine[i][j]);
|
|
for(int inbr=MAX(0,i-scale); inbr<=MIN(height-1,i+scale); inbr+=scale) {
|
|
for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) {
|
|
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
|
dirwtv = thousandv / (vabsf(dftemp2v-dftemp1v) + thousandv);
|
|
valv += dirwtv*dftemp2v;
|
|
normv += dirwtv;
|
|
}
|
|
}
|
|
_mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter
|
|
}
|
|
|
|
for(; j < width-scale; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
|
|
for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
#else
|
|
|
|
for(; j < width-scale; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
|
|
for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
#endif
|
|
for(; j < width; j++)
|
|
{
|
|
float val=0.f;
|
|
float norm=0.f;
|
|
|
|
for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) {
|
|
for (int jnbr=j-scale; jnbr<=min(width-1,j+scale); jnbr+=scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j]));
|
|
val += dirwt*data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
data_coarse[i][j]=val/norm;//low pass filter
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice)
|
|
{
|
|
const float skinprotneg = -skinprot;
|
|
const float factorHard = (1.f - skinprotneg/100.f);
|
|
|
|
float offs;
|
|
if(skinprot==0.f)
|
|
offs = 0.f;
|
|
else
|
|
offs = -1.f;
|
|
float multbis[6];
|
|
|
|
multbis[level]=mult[level];//multbis to reduce artifacts for high values mult
|
|
if(level==4 && mult[level]> 1.f) multbis[level]=1.f+0.65f*(mult[level]-1.f);
|
|
if(level==5 && mult[level]> 1.f) multbis[level]=1.f+0.45f*(mult[level]-1.f);
|
|
|
|
LUTf irangefn (0x20000);
|
|
{
|
|
const float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0));
|
|
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
|
|
|
|
for (int i=0; i<0x20000; i++) {
|
|
if (abs(i-0x10000)>noisehi || multbis[level]<1.0) {
|
|
irangefn[i] = multbis[level] + offs;
|
|
} else {
|
|
if (abs(i-0x10000)<noiselo) {
|
|
irangefn[i] = 1.f + offs ;
|
|
} else {
|
|
irangefn[i] = 1.f + offs + (multbis[level]-1.f) * (noisehi-abs(i-0x10000))/(noisehi-noiselo+0.01f) ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(skinprot==0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
buffer[i][j] += irangefn[hipass+0x10000] * hipass;
|
|
}
|
|
}
|
|
else if(skinprot > 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float scale=1.f;
|
|
float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
// These values are precalculated now
|
|
float modhue = hue[i][j];
|
|
float modchro = chrom[i][j];
|
|
Color::SkinSatCbdl ((data_fine[i][j])/327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f +(irangefn[hipass+0x10000])*scale) * hipass ;
|
|
}
|
|
}
|
|
else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float scale=1.f;
|
|
float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
// These values are precalculated now
|
|
float modhue = hue[i][j];
|
|
float modchro = chrom[i][j];
|
|
Color::SkinSatCbdl ((data_fine[i][j])/327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r);
|
|
float correct = irangefn[hipass+0x10000];
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f +(correct)* (factorHard)) * hipass ;
|
|
}
|
|
else {//image soft with scale < 1 ==> skin
|
|
buffer[i][j] += (1.f +(correct)) * hipass ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ImProcFunctions::idirpyr_eq_channelcam(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, const double skinprot, float b_l, float t_l, float t_r)
|
|
{
|
|
|
|
const float skinprotneg = -skinprot;
|
|
const float factorHard = (1.f - skinprotneg/100.f);
|
|
|
|
float offs;
|
|
if(skinprot==0.f)
|
|
offs = 0.f;
|
|
else
|
|
offs = -1.f;
|
|
float multbis[6];
|
|
|
|
multbis[level]=mult[level];//multbis to reduce artifacts for high values mult
|
|
if(level==4 && mult[level]> 1.f) multbis[level]=1.f+0.65f*(mult[level]-1.f);
|
|
if(level==5 && mult[level]> 1.f) multbis[level]=1.f+0.45f*(mult[level]-1.f);
|
|
|
|
LUTf irangefn (0x20000);
|
|
{
|
|
const float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0));
|
|
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
|
|
for (int i=0; i<0x20000; i++) {
|
|
if (abs(i-0x10000)>noisehi || multbis[level]<1.0) {
|
|
irangefn[i] = multbis[level] + offs;
|
|
} else {
|
|
if (abs(i-0x10000)<noiselo) {
|
|
irangefn[i] = 1.f + offs ;
|
|
} else {
|
|
irangefn[i] = 1.f + offs + (multbis[level]-1.f) * (noisehi-abs(i-0x10000))/(noisehi-noiselo+0.01f) ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(skinprot == 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
buffer[i][j] += irangefn[hipass+0x10000] * hipass ;
|
|
}
|
|
}
|
|
else if(skinprot > 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
float scale=1.f;
|
|
Color::SkinSatCbdlCam ((data_fine[i][j])/327.68f, l_a_h[i][j] ,l_b_c[i][j], skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f +(irangefn[hipass+0x10000])*scale) * hipass ;
|
|
}
|
|
}
|
|
else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
float scale=1.f;
|
|
float correct;
|
|
correct=irangefn[hipass+0x10000];
|
|
Color::SkinSatCbdlCam ((data_fine[i][j])/327.68f, l_a_h[i][j],l_b_c[i][j] , skinprotneg, scale, false, b_l, t_l, t_r);
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f +(correct)* factorHard) * hipass ;
|
|
|
|
}
|
|
else {//image soft
|
|
buffer[i][j] += (1.f +(correct)) * hipass ;
|
|
}
|
|
}
|
|
}
|
|
// if(gamutlab) {
|
|
// ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels
|
|
// }
|
|
|
|
/* if(gamutlab) {//disabled
|
|
float Lprov1=(buffer[i][j])/327.68f;
|
|
float R,G,B;
|
|
#ifdef _DEBUG
|
|
bool neg=false;
|
|
bool more_rgb=false;
|
|
//gamut control : Lab values are in gamut
|
|
Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb);
|
|
#else
|
|
//gamut control : Lab values are in gamut
|
|
Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);
|
|
#endif
|
|
// Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);//gamut control in Lab mode ..not in CIECAM
|
|
buffer[i][j]=Lprov1*327.68f;
|
|
float2 sincosval = xsincosf(modhue);
|
|
l_a_h[i][j]=327.68f*modchro*sincosval.y;
|
|
l_b_c[i][j]=327.68f*modchro*sincosval.x;
|
|
}
|
|
*/
|
|
}
|
|
|
|
// float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
// buffer[i][j] += irangefn[hipass+0x10000] * hipass ;
|
|
|
|
#undef DIRWT_L
|
|
#undef DIRWT_AB
|
|
|
|
#undef NRWT_L
|
|
#undef NRWT_AB
|
|
|
|
}
|
|
|