rawTherapee/rtengine/green_equil_RT.cc

154 lines
5.6 KiB
C++

////////////////////////////////////////////////////////////////
//
// Green Equilibration via directional average
//
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: February 12, 2011
//
// green_equil_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#define TS 256 // Tile size
#include <cmath>
#include <cstdlib>
#include <ctime>
#include "rt_math.h"
#include "rawimagesource.h"
namespace rtengine
{
//void green_equilibrate()//for dcraw implementation
void RawImageSource::green_equilibrate(float thresh)
{
// thresh = threshold for performing green equilibration; max percentage difference of G1 vs G2
// G1-G2 differences larger than this will be assumed to be Nyquist texture, and left untouched
int height = H, width = W;
// local variables
float** rawptr = rawData;
array2D<float> cfa (width, height, rawptr);
//array2D<int> checker (width,height,ARRAY2D_CLEAR_DATA);
//int verbose=1;
static const float eps = 1.0; //tolerance to avoid dividing by zero
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Fill G interpolated values with border interpolation and input values
//int vote1, vote2;
//int counter, vtest;
//The green equilibration algorithm starts here
/*
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int rr=1; rr < height-1; rr++)
for (int cc=3-(FC(rr,2)&1); cc < width-2; cc+=2) {
float pcorr = (cfa[rr+1][cc+1]-cfa[rr][cc])*(cfa[rr-1][cc-1]-cfa[rr][cc]);
float mcorr = (cfa[rr-1][cc+1]-cfa[rr][cc])*(cfa[rr+1][cc-1]-cfa[rr][cc]);
if (pcorr>0 && mcorr>0) {checker[rr][cc]=1;} else {checker[rr][cc]=0;}
checker[rr][cc]=1;//test what happens if we always interpolate
}
counter=vtest=0;
*/
//now smooth the cfa data
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int rr = 4; rr < height - 4; rr++)
for (int cc = 5 - (FC(rr, 2) & 1); cc < width - 6; cc += 2) {
//if (checker[rr][cc]) {
//%%%%%%%%%%%%%%%%%%%%%%
//neighbor checking code from Manuel Llorens Garcia
float o1_1 = cfa[(rr - 1)][cc - 1];
float o1_2 = cfa[(rr - 1)][cc + 1];
float o1_3 = cfa[(rr + 1)][cc - 1];
float o1_4 = cfa[(rr + 1)][cc + 1];
float o2_1 = cfa[(rr - 2)][cc];
float o2_2 = cfa[(rr + 2)][cc];
float o2_3 = cfa[(rr)][cc - 2];
float o2_4 = cfa[(rr)][cc + 2];
float d1 = (o1_1 + o1_2 + o1_3 + o1_4) * 0.25f;
float d2 = (o2_1 + o2_2 + o2_3 + o2_4) * 0.25f;
float c1 = (fabs(o1_1 - o1_2) + fabs(o1_1 - o1_3) + fabs(o1_1 - o1_4) + fabs(o1_2 - o1_3) + fabs(o1_3 - o1_4) + fabs(o1_2 - o1_4)) / 6.0;
float c2 = (fabs(o2_1 - o2_2) + fabs(o2_1 - o2_3) + fabs(o2_1 - o2_4) + fabs(o2_2 - o2_3) + fabs(o2_3 - o2_4) + fabs(o2_2 - o2_4)) / 6.0;
//%%%%%%%%%%%%%%%%%%%%%%
//vote1=(checker[rr-2][cc]+checker[rr][cc-2]+checker[rr][cc+2]+checker[rr+2][cc]);
//vote2=(checker[rr+1][cc-1]+checker[rr+1][cc+1]+checker[rr-1][cc-1]+checker[rr-1][cc+1]);
//if ((vote1==0 || vote2==0) && (c1+c2)<2*thresh*fabs(d1-d2)) vtest++;
//if (vote1>0 && vote2>0 && (c1+c2)<4*thresh*fabs(d1-d2)) {
if ((c1 + c2) < 4 * thresh * fabs(d1 - d2)) {
//pixel interpolation
float gin = cfa[rr][cc];
float gse = (cfa[rr + 1][cc + 1]) + 0.5 * (cfa[rr][cc] - cfa[rr + 2][cc + 2]);
float gnw = (cfa[rr - 1][cc - 1]) + 0.5 * (cfa[rr][cc] - cfa[rr - 2][cc - 2]);
float gne = (cfa[rr - 1][cc + 1]) + 0.5 * (cfa[rr][cc] - cfa[rr - 2][cc + 2]);
float gsw = (cfa[rr + 1][cc - 1]) + 0.5 * (cfa[rr][cc] - cfa[rr + 2][cc - 2]);
float wtse = 1.0f / (eps + SQR(cfa[rr + 2][cc + 2] - cfa[rr][cc]) + SQR(cfa[rr + 3][cc + 3] - cfa[rr + 1][cc + 1]));
float wtnw = 1.0f / (eps + SQR(cfa[rr - 2][cc - 2] - cfa[rr][cc]) + SQR(cfa[rr - 3][cc - 3] - cfa[rr - 1][cc - 1]));
float wtne = 1.0f / (eps + SQR(cfa[rr - 2][cc + 2] - cfa[rr][cc]) + SQR(cfa[rr - 3][cc + 3] - cfa[rr - 1][cc + 1]));
float wtsw = 1.0f / (eps + SQR(cfa[rr + 2][cc - 2] - cfa[rr][cc]) + SQR(cfa[rr + 3][cc - 3] - cfa[rr + 1][cc - 1]));
float ginterp = (gse * wtse + gnw * wtnw + gne * wtne + gsw * wtsw) / (wtse + wtnw + wtne + wtsw);
if ( ((ginterp - gin) < thresh * (ginterp + gin)) ) {
rawData[rr][cc] = 0.5f * (ginterp + gin);
//counter++;
}
}
// }
}
//printf("pixfix count= %d; vtest= %d \n",counter,vtest);
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// done
/*t2 = clock();
dt = ((double)(t2-t1)) / CLOCKS_PER_SEC;
if (verbose) {
fprintf(stderr,_("elapsed time = %5.3fs\n"),dt);
}*/
}
}
#undef TS