Files
rawTherapee/rtengine/ipsharpen.cc
2011-07-17 19:00:50 +02:00

571 lines
25 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <rtengine.h>
#include <improcfun.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include <minmax.h>
#include <gauss.h>
#include <bilateral2.h>
namespace rtengine {
#undef CLIP
#undef CMAXVAL
#undef ABS
#define CMAXVAL 0xffff
#define CLIP(a) ((a)>0?((a)<CMAXVAL?(a):CMAXVAL):0)
#define ABS(a) ((a)<0?-(a):(a))
extern Settings* settings;
void ImProcFunctions::dcdamping (float** aI, float** aO, float damping, int W, int H) {
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<H; i++)
for (int j=0; j<W; j++) {
float I = aI[i][j];
float O = (float)aO[i][j];
if (O==0.0 || I==0.0) {
aI[i][j] = 0.0;
continue;
}
float U = -(O * log(I/O) - I + O) * 2.0 / (damping*damping);
U = MIN(U,1.0);
U = U*U*U*U*(5.0-U*4.0);
aI[i][j] = (O - I) / I * U + 1.0;
}
}
void ImProcFunctions::deconvsharpening (LabImage* lab, float** b2) {
if (params->sharpening.enabled==false || params->sharpening.deconvamount<1)
return;
int W = lab->W, H = lab->H;
float** tmpI = new float*[H];
for (int i=0; i<H; i++) {
tmpI[i] = new float[W];
for (int j=0; j<W; j++)
tmpI[i][j] = (float)lab->L[i][j];
}
float** tmp = (float**)b2;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBuffer<double>* buffer = new AlignedBuffer<double> (MAX(W,H));
float damping = params->sharpening.deconvdamping / 5.0;
bool needdamp = params->sharpening.deconvdamping > 0;
for (int k=0; k<params->sharpening.deconviter; k++) {
// apply blur function (gaussian blur)
gaussHorizontal<float> (tmpI, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread);
gaussVertical<float> (tmp, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread);
if (!needdamp) {
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<H; i++)
for (int j=0; j<W; j++)
if (tmp[i][j]>0)
tmp[i][j] = (float)lab->L[i][j] / tmp[i][j];
}
else
dcdamping (tmp, lab->L, damping, W, H);
gaussHorizontal<float> (tmp, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread);
gaussVertical<float> (tmp, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread);
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<H; i++)
for (int j=0; j<W; j++)
tmpI[i][j] = tmpI[i][j] * tmp[i][j];
} // end for
delete buffer;
float p2 = params->sharpening.deconvamount /100.0;
float p1 = 1.0 - p2;
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<H; i++)
for (int j=0; j<W; j++)
lab->L[i][j] = lab->L[i][j]*p1 + /*CLIP*/(tmpI[i][j])*p2;
} // end parallel
for (int i=0; i<H; i++)
delete [] tmpI[i];
delete [] tmpI;
}
void ImProcFunctions::sharpening (LabImage* lab, float** b2) {
if (params->sharpening.method=="rld") {
deconvsharpening (lab, b2);
return;
}
// Rest is UNSHARP MASK
if (params->sharpening.enabled==false || params->sharpening.amount<1 || lab->W<8 || lab->H<8)
return;
int W = lab->W, H = lab->H;
float** b3;
if (params->sharpening.edgesonly)
{
b3 = new float*[H];
for (int i=0; i<H; i++)
b3[i] = new float[W];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBuffer<double>* buffer = new AlignedBuffer<double> (MAX(W,H));
if (params->sharpening.edgesonly==false) {
gaussHorizontal<float> (lab->L, b2, buffer, W, H, params->sharpening.radius / scale, multiThread);
gaussVertical<float> (b2, b2, buffer, W, H, params->sharpening.radius / scale, multiThread);
}
else {
bilateral<float, float> (lab->L, (float**)b3, b2, W, H, params->sharpening.edges_radius / scale, params->sharpening.edges_tolerance, multiThread);
gaussHorizontal<float> (b3, b2, buffer, W, H, params->sharpening.radius / scale, multiThread);
gaussVertical<float> (b2, b2, buffer, W, H, params->sharpening.radius / scale, multiThread);
}
delete buffer;
float** base = lab->L;
if (params->sharpening.edgesonly)
base = b3;
if (params->sharpening.halocontrol==false) {
#pragma omp for
for (int i=0; i<H; i++)
for (int j=0; j<W; j++) {
float diff = base[i][j] - b2[i][j];
if (ABS(diff)>params->sharpening.threshold) {
lab->L[i][j] = lab->L[i][j] + params->sharpening.amount * diff / 100.f;
}
}
}
else
sharpenHaloCtrl (lab, b2, base, W, H);
} // end parallel
if (params->sharpening.edgesonly) {
for (int i=0; i<H; i++)
delete [] b3[i];
delete [] b3;
}
}
void ImProcFunctions::sharpenHaloCtrl (LabImage* lab, float** blurmap, float** base, int W, int H) {
float scale = (100.f - params->sharpening.halocontrol_amount) * 0.01f;
float sharpFac = params->sharpening.amount * 0.01f;
float** nL = base;
#pragma omp parallel for if (multiThread)
for (int i=2; i<H-2; i++) {
float max1 = 0, max2 = 0, min1 = 0, min2 = 0, maxn, minn, np1, np2, np3, min, max, labL;
for (int j=2; j<W-2; j++) {
// compute 3 iterations, only forward
np1 = 2.f * (nL[i-2][j] + nL[i-2][j+1] + nL[i-2][j+2] + nL[i-1][j] + nL[i-1][j+1] + nL[i-1][j+2] + nL[i] [j] + nL[i] [j+1] + nL[i] [j+2]) / 27.f + nL[i-1][j+1] / 3.f;
np2 = 2.f * (nL[i-1][j] + nL[i-1][j+1] + nL[i-1][j+2] + nL[i] [j] + nL[i] [j+1] + nL[i] [j+2] + nL[i+1][j] + nL[i+1][j+1] + nL[i+1][j+2]) / 27.f + nL[i] [j+1] / 3.f;
np3 = 2.f * (nL[i] [j] + nL[i] [j+1] + nL[i] [j+2] + nL[i+1][j] + nL[i+1][j+1] + nL[i+1][j+2] + nL[i+2][j] + nL[i+2][j+1] + nL[i+2][j+2]) / 27.f + nL[i+1][j+1] / 3.f;
// Max/Min of all these deltas and the last two max/min
MINMAX3(np1,np2,np3,maxn,minn);
MAX3(max1,max2,maxn,max);
MIN3(min1,min2,minn,min);
// Shift the queue
max1 = max2; max2 = maxn;
min1 = min2; min2 = minn;
labL = lab->L[i][j];
if (max < labL) max = labL;
if (min > labL) min = labL;
// deviation from the environment as measurement
float diff = nL[i][j] - blurmap[i][j];
if (ABS(diff) > params->sharpening.threshold) {
float newL = labL + sharpFac * diff;
// applying halo control
if (newL > max)
newL = max + (newL-max) * scale;
else if (newL < min)
newL = min - (min-newL) * scale;
lab->L[i][j] = newL;
}
}
}
}
// To the extent possible under law, Manuel Llorens <manuelllorens@gmail.com>[
// has waived all copyright and related or neighboring rights to this work.
// This work is published from: Spain.
//thanks to Manuel for this excellent job.. (Jacques Desmis JDC or frej83)
void ImProcFunctions::MLsharpen (LabImage* lab) {
// JD: this algorithm maximize clarity of images; it does not play on accutance. It can remove (partialy) the effects of the AA filter)
// I think we can use this algorithm alone in most cases, or first to clarify image and if you want a very little USM (unsharp mask sharpening) after...
if (params->clarity.enabled==false)
return;
MyTime t1e,t2e;
t1e.set();
int offset,c,i,j,p,width2;
int width = lab->W, height = lab->H;
float *L,lumH,lumV,lumD1,lumD2,v,contrast,med,s;
float difL,difR,difT,difB,difLT,difRB,difLB,difRT,wH,wV,wD1,wD2,chmax[3];
float f1,f2,f3,f4;
float templab;
int iii,kkk;
width2=2*width;
float strength;
strength=params->clarity.clstrength / 100.0f;
if(strength < 0.00001f) return;
if (settings->verbose) printf ("Clarity strength %f\n", strength);
L = new float[width*height];
chmax[0]=8.0f;
chmax[1]=3.0f;
chmax[2]=3.0f;
int channels;
if(params->clarity.clthreechannels) channels=0; else channels=2;
if (settings->verbose) printf ("Clarity channels %d\n", channels);
int passes=params->clarity.clpasses;
if (settings->verbose) printf ("Clarity passes %d\n", passes);
for(p=0;p<passes;p++)
for(c=0;c<=channels;c++) {// c=0 Luminance only
#pragma omp parallel for private(offset) shared(L)
for(offset=0;offset<width*height;offset++)
{int ii=offset/width;
int kk=offset-ii*width;
if(c==0) L[offset]=lab->L[ii][kk]/327.68f; // adjust to RT and to 0..100
else if (c==1) L[offset]=lab->a[ii][kk]/327.68f;
else if (c==2) L[offset]=lab->b[ii][kk]/327.68f;
}
#pragma omp parallel for private(j,i,iii,kkk, templab,offset,wH,wV,wD1,wD2,s,lumH,lumV,lumD1,lumD2,v,contrast,f1,f2,f3,f4,difT,difB,difL,difR,difLT,difLB,difRT,difRB) shared(lab,L,strength)
for(j=2;j<height-2;j++)
for(i=2,offset=j*width+i;i<width-2;i++,offset++){
// weight functions
wH=fabs(L[offset+1]-L[offset-1]);
wV=fabs(L[offset+width]-L[offset-width]);
s=1.0+fabs(wH-wV)/2.0;
wD1=fabs(L[offset+width+1]-L[offset-width-1])/s;
wD2=fabs(L[offset+width-1]-L[offset-width+1])/s;
s=wD1;
wD1/=wD2;
wD2/=wD1;
// initial values
int ii=offset/width;
int kk=offset-ii*width;
if(c==0)lumH=lumV=lumD1=lumD2=v=lab->L[ii][kk]/327.68f;
else if (c==1) lumH=lumV=lumD1=lumD2=v=lab->a[ii][kk]/327.68f;
else if (c==2) lumH=lumV=lumD1=lumD2=v=lab->b[ii][kk]/327.68f;
// contrast detection
contrast=sqrt(fabs(L[offset+1]-L[offset-1])*fabs(L[offset+1]-L[offset-1])+fabs(L[offset+width]-L[offset-width])*fabs(L[offset+width]-L[offset-width]))/chmax[c];
if(contrast>1.0) contrast=1.0;
// new possible values
if((L[offset]<L[offset-1])&&(L[offset]>L[offset+1])||(L[offset]>L[offset-1])&&(L[offset]<L[offset+1])){
f1=fabs(L[offset-2]-L[offset-1]);
f2=fabs(L[offset-1]-L[offset]);
f3=fabs(L[offset-1]-L[offset-width])*fabs(L[offset-1]-L[offset+width]);
f4=sqrt(fabs(L[offset-1]-L[offset-width2])*fabs(L[offset-1]-L[offset+width2]));
difL=f1*f2*f2*f3*f3*f4;
f1=fabs(L[offset+2]-L[offset+1]);
f2=fabs(L[offset+1]-L[offset]);
f3=fabs(L[offset+1]-L[offset-width])*fabs(L[offset+1]-L[offset+width]);
f4=sqrt(fabs(L[offset+1]-L[offset-width2])*fabs(L[offset+1]-L[offset+width2]));
difR=f1*f2*f2*f3*f3*f4;
if((difR!=0)&&(difL!=0)){
lumH=(L[offset-1]*difR+L[offset+1]*difL)/(difL+difR);
lumH=v*(1-contrast)+lumH*contrast;
}
}
if((L[offset]<L[offset-width])&&(L[offset]>L[offset+width])||(L[offset]>L[offset-width])&&(L[offset]<L[offset+width])){
f1=fabs(L[offset-width2]-L[offset-width]);
f2=fabs(L[offset-width]-L[offset]);
f3=fabs(L[offset-width]-L[offset-1])*fabs(L[offset-width]-L[offset+1]);
f4=sqrt(fabs(L[offset-width]-L[offset-2])*fabs(L[offset-width]-L[offset+2]));
difT=f1*f2*f2*f3*f3*f4;
f1=fabs(L[offset+width2]-L[offset+width]);
f2=fabs(L[offset+width]-L[offset]);
f3=fabs(L[offset+width]-L[offset-1])*fabs(L[offset+width]-L[offset+1]);
f4=sqrt(fabs(L[offset+width]-L[offset-2])*fabs(L[offset+width]-L[offset+2]));
difB=f1*f2*f2*f3*f3*f4;
if((difB!=0)&&(difT!=0)){
lumV=(L[offset-width]*difB+L[offset+width]*difT)/(difT+difB);
lumV=v*(1-contrast)+lumV*contrast;
}
}
if((L[offset]<L[offset-1-width])&&(L[offset]>L[offset+1+width])||(L[offset]>L[offset-1-width])&&(L[offset]<L[offset+1+width])){
f1=fabs(L[offset-2-width2]-L[offset-1-width]);
f2=fabs(L[offset-1-width]-L[offset]);
f3=fabs(L[offset-1-width]-L[offset-width+1])*fabs(L[offset-1-width]-L[offset+width-1]);
f4=sqrt(fabs(L[offset-1-width]-L[offset-width2+2])*fabs(L[offset-1-width]-L[offset+width2-2]));
difLT=f1*f2*f2*f3*f3*f4;
f1=fabs(L[offset+2+width2]-L[offset+1+width]);
f2=fabs(L[offset+1+width]-L[offset]);
f3=fabs(L[offset+1+width]-L[offset-width+1])*fabs(L[offset+1+width]-L[offset+width-1]);
f4=sqrt(fabs(L[offset+1+width]-L[offset-width2+2])*fabs(L[offset+1+width]-L[offset+width2-2]));
difRB=f1*f2*f2*f3*f3*f4;
if((difLT!=0)&&(difRB!=0)){
lumD1=(L[offset-1-width]*difRB+L[offset+1+width]*difLT)/(difLT+difRB);
lumD1=v*(1-contrast)+lumD1*contrast;
}
}
if((L[offset]<L[offset+1-width])&&(L[offset]>L[offset-1+width])||(L[offset]>L[offset+1-width])&&(L[offset]<L[offset-1+width])){
f1=fabs(L[offset-2+width2]-L[offset-1+width]);
f2=fabs(L[offset-1+width]-L[offset]);
f3=fabs(L[offset-1+width]-L[offset-width-1])*fabs(L[offset-1+width]-L[offset+width+1]);
f4=sqrt(fabs(L[offset-1+width]-L[offset-width2-2])*fabs(L[offset-1+width]-L[offset+width2+2]));
difLB=f1*f2*f2*f3*f3*f4;
f1=fabs(L[offset+2-width2]-L[offset+1-width]);
f2=fabs(L[offset+1-width]-L[offset])*fabs(L[offset+1-width]-L[offset]);
f3=fabs(L[offset+1-width]-L[offset+width+1])*fabs(L[offset+1-width]-L[offset-width-1]);
f4=sqrt(fabs(L[offset+1-width]-L[offset+width2+2])*fabs(L[offset+1-width]-L[offset-width2-2]));
difRT=f1*f2*f2*f3*f3*f4;
if((difLB!=0)&&(difRT!=0)){
lumD2=(L[offset+1-width]*difLB+L[offset-1+width]*difRT)/(difLB+difRT);
lumD2=v*(1-contrast)+lumD2*contrast;
}
}
s=strength;
// avoid sharpening diagonals too much
if(((fabs(wH/wV)<0.45f)&&(fabs(wH/wV)>0.05f))||((fabs(wV/wH)<0.45f)&&(fabs(wV/wH)>0.05f))) s=strength/3.0f;
// final mix
if((wH!=0.0f)&&(wV!=0.0f)&&(wD1!=0.0f)&&(wD2!=0.0f)) {
iii=offset/width;
kkk=offset-iii*width;
templab=v*(1-s)+(lumH*wH+lumV*wV+lumD1*wD1+lumD2*wD2)/(wH+wV+wD1+wD2)*s;
if(c==0) lab->L[iii][kkk]=fabs(327.68f*templab);// fabs because lab->L always >0
else if (c==1){lab->a[iii][kkk]=327.68f*templab;}
else if (c==2)lab->b[iii][kkk]=327.68f*templab;
}
}
}
delete [] L;
t2e.set();
if( settings->verbose )
printf("Clarity gradient %d usec\n", t2e.etime(t1e));
}
// To the extent possible under law, Manuel Llorens <manuelllorens@gmail.com>
// has waived all copyright and related or neighboring rights to this work.
// This code is licensed under CC0 v1.0, see license information at
// http://creativecommons.org/publicdomain/zero/1.0/
// addition from JD : pyramid + ponderated contrast with matrix 5x5
void ImProcFunctions::MLmicrocontrast(LabImage* lab){
if (params->clarity.enabledtwo==false)
return;
MyTime t1e,t2e;
t1e.set();
int k;
if(params->clarity.MLmicromatrix == false) k=2; else k=1;
// k=2 matrix 5x5 k=1 matrix 3x3
int offset,offset2,c,i,j,col,row,n;
float temp,temp2,temp3,temp4,tempL;
float *LM,v,s,contrast,w;
int signs[25];
int width = lab->W, height = lab->H;
float uniform=params->clarity.uniformity;//between 0 to 100
int unif;
unif=(int)(uniform/10.0f); //put unif between 0 to 10
float strength=params->clarity.mlstrength/1500.0f; //strength 2000.0 quasi no artefacts ==> 1500 = maximum, after artefacts
if(strength < 0.000001f) return;
if(k==1) strength*=2.0f;//25/9, but reality # 2
if (settings->verbose) printf ("Microcontrast strength %f\n", strength);
if (settings->verbose) printf ("Microcontrast uniformity %i\n",unif);
//modualtion uniformity in function of luminance
float L98[11]={0.0012f,0.0015f,0.002f,0.004f,0.006f,0.008f,0.01f,0.03f,0.05f,0.1f,0.1f};
float L95[11]={0.0015f,0.0025f,0.005f,0.01f,0.02f,0.05f,0.1f,0.12f,0.15f,0.2f,0.25f};
float L92[11]={0.01f,0.015f,0.02f,0.06f,0.10f,0.13f,0.17f,0.25f,0.3f,0.32f,0.35f};
float L90[11]={0.015f,0.02f,0.04f,0.08f,0.12f,0.15f,0.2f,0.3f,0.4f,0.5f,0.6f};
float L87[11]={0.025f,0.03f,0.05f,0.1f,0.15f,0.25f,0.3f,0.4f,0.5f,0.63f,0.75f};
float L83[11]={0.055f,0.08f,0.1f,0.15f,0.2f,0.3f,0.4f,0.5f,0.6f,0.75f,0.85f};
float L80[11]={0.15f,0.2f,0.25f,0.3f,0.35f,0.4f,0.5f,0.6f,0.7f,0.8f,0.9f};
float L75[11]={0.22f,0.25f,0.3f,0.4f,0.5f,0.6f,0.7f,0.8f,0.85f,0.9f,0.95f};
float L70[11]={0.35f,0.4f,0.5f,0.6f,0.7f,0.8f,0.97f,1.0f,1.0f,1.0f,1.0f};
float L63[11]={0.55f,0.6f,0.7f,0.8f,0.85f,0.9f,1.0f,1.0f,1.0f,1.0f,1.0f};
float L58[11]={0.75f,0.77f,0.8f,0.9f,1.0f,1.0f,1.0f,1.0f,1.0f,1.0f,1.0f};
//default 5
float chmax=8.0f;
LM = new float[width*height];//allocation for Luminance
c=0;
#pragma omp parallel for private(offset, i,j) shared(LM)
for(j=0;j<height;j++)
for(i=0,offset=j*width+i;i<width;i++,offset++){
LM[offset]=lab->L[j][i]/327.68f;// adjust to 0.100 and to RT variables
}
#pragma omp parallel for private(j,i,offset,s,signs,v,n,row,col,offset2,contrast,temp,w,temp2,temp3,tempL,temp4) shared(lab,LM,strength,chmax,unif,k,L98,L95,L92,L90,L87,L83,L80,L75,L70,L63,L58)
for(j=k;j<height-k;j++)
for(i=k,offset=j*width+i;i<width-k;i++,offset++){
s=strength;
v=LM[offset];
n=0;
for(row=j-k;row<=j+k;row++)
for(col=i-k,offset2=row*width+col;col<=i+k;col++,offset2++){
signs[n]=0;
if(v<LM[offset2]) signs[n]=-1;
if(v>LM[offset2]) signs[n]=1;
n++;
}
if(k==1) contrast=sqrt(fabs(LM[offset+1]-LM[offset-1])*fabs(LM[offset+1]-LM[offset-1])+fabs(LM[offset+width]-LM[offset-width])*fabs(LM[offset+width]-LM[offset-width]))/chmax; //for 3x3
else if(k==2) contrast=sqrt(fabs(LM[offset+1]-LM[offset-1])*fabs(LM[offset+1]-LM[offset-1])+fabs(LM[offset+width]-LM[offset-width])*fabs(LM[offset+width]-LM[offset-width])\
+fabs(LM[offset+2]-LM[offset-2])*fabs(LM[offset+2]-LM[offset-2])+fabs(LM[offset+2*width]-LM[offset-2*width])*fabs(LM[offset+2*width]-LM[offset-2*width]))/(2*chmax); //for 5x5
if(contrast>1.0f) contrast=1.0f;
//matrix 5x5
temp=lab->L[j][i]/327.68f; //begin 3x3
temp +=(v-LM[offset-width-1])*sqrtf(2.0f)*s;
temp +=(v-LM[offset-width])*s;
temp +=(v-LM[offset-width+1])*sqrtf(2.0f)*s;
temp +=(v-LM[offset-1])*s;
temp +=(v-LM[offset+1])*s;
temp +=(v-LM[offset+width-1])*sqrtf(2.0f)*s;
temp +=(v-LM[offset+width])*s;
temp +=(v-LM[offset+width+1])*sqrtf(2.0f)*s;//end 3x3
// add JD continue 5x5
if(k==2) {
temp +=2.0f*(v-LM[offset+2*width])*s;
temp +=2.0f*(v-LM[offset-2*width])*s;
temp +=2.0f*(v-LM[offset-2])*s;
temp +=2.0f*(v-LM[offset+2])*s;
temp +=2.0f*(v-LM[offset+2*width -1])*s*sqrtf(1.25f);// 1.25 = 1*1 + 0.5*0.5
temp +=2.0f*(v-LM[offset+2*width -2])*s*sqrtf(2.0f);
temp +=2.0f*(v-LM[offset+2*width+1])*s*sqrtf(1.25f);;
temp +=2.0f*(v-LM[offset+2*width+2])*s*sqrtf(2.0f);
temp +=2.0f*(v-LM[offset+ width+2])*s*sqrtf(1.25f);;
temp +=2.0f*(v-LM[offset+width-2])*s*sqrtf(1.25f);;
temp +=2.0f*(v-LM[offset-2*width -1])*s*sqrtf(1.25f);
temp +=2.0f*(v-LM[offset-2*width -2])*s*sqrtf(2.0f);
temp +=2.0f*(v-LM[offset-2*width+1])*s*sqrtf(1.25f);;
temp +=2.0f*(v-LM[offset-2*width+2])*s*sqrtf(2.0f);
temp +=2.0f*(v-LM[offset- width+2])*s*sqrtf(1.25f);;
temp +=2.0f*(v-LM[offset-width-2])*s*sqrtf(1.25f);;
}
if(temp <0.0f) temp=0.0f;
v=temp;
n=0;
for(row=j-k;row<=j+k;row++)
for(col=i-k,offset2=row*width+col;col<=i+k;col++,offset2++){
if(((v<LM[offset2])&&(signs[n]>0))||((v>LM[offset2])&&(signs[n]<0)))
{
temp =v*0.75f+LM[offset2]*0.25f;// 0.75 0.25
n++;
}
}
if(LM[offset]>95.0f || LM[offset]<5.0f) contrast*=0.05f; //+ JD : luminance pyramid to adjust contrast and avoid pseudo halo by evaluation of LM[offset]
else if(LM[offset]>90.0f || LM[offset]<10.0f) contrast*=0.3f;
else if(LM[offset]>80.0f || LM[offset]<20.0f) contrast*=0.5f;
else if(LM[offset]>70.0f || LM[offset]<30.0f) contrast*=0.6f;
else if(LM[offset]>60.0f || LM[offset]<40.0f) contrast*=0.7f;
else contrast*=0.8f;
if(contrast>1.0f) contrast=1.0f;
tempL=327.68f*(temp*(1.0f-contrast)+LM[offset]*contrast);
// JD: modulation of microcontrast in function of original Luminance and modulation of luminance
temp2=tempL/(327.68f*LM[offset]);//for highlights
if(temp2>1.0f) {
if(LM[offset]>98.0f) {temp3=temp2-1.0f;temp=(L98[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>95.0f) {temp3=temp2-1.0f;temp=(L95[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>92.0f) {temp3=temp2-1.0f;temp=(L92[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>90.0f) {temp3=temp2-1.0f;temp=(L90[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>87.0f) {temp3=temp2-1.0f;temp=(L87[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>83.0f) {temp3=temp2-1.0f;temp=(L83[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>80.0f) {temp3=temp2-1.0f;temp=(L80[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>75.0f) {temp3=temp2-1.0f;temp=(L75[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>70.0f) {temp3=temp2-1.0f;temp=(L70[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>63.0f) {temp3=temp2-1.0f;temp=(L63[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else if(LM[offset]>58.0f) {temp3=temp2-1.0f;temp=(L58[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;}
else lab->L[j][i]=tempL;//no modulation for L <58
}
temp4=(327.68f*LM[offset])/tempL;//for lowlights
if(temp4>1.0f) {
if(LM[offset]<2.0f) {temp3=temp4-1.0f;temp=(L98[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<5.0f) {temp3=temp4-1.0f;temp=(L95[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<8.0f) {temp3=temp4-1.0f;temp=(L92[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<10.0f) {temp3=temp4-1.0f;temp=(L90[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<13.0f) {temp3=temp4-1.0f;temp=(L87[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<17.0f) {temp3=temp4-1.0f;temp=(L83[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<20.0f) {temp3=temp4-1.0f;temp=(L80[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<25.0f) {temp3=temp4-1.0f;temp=(L75[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<30.0f) {temp3=temp4-1.0f;temp=(L70[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<37.0f) {temp3=temp4-1.0f;temp=(L63[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else if(LM[offset]<42.0f) {temp3=temp4-1.0f;temp=(L58[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;}
else lab->L[j][i]=tempL;//no modulation for L>42
}
}
delete [] LM;
t2e.set();
if( settings->verbose )
printf("Microcontrast %d usec\n", t2e.etime(t1e));
}
}