flipperzero-firmware/wiki/fw/api/Basic-API.md
coreglitch 942bbfaefe
Core api concept (#144)
* add input debounce code from old fw

* exampl of input api

* change input API to get/release

* revert input API to read

* pointer instead of instance

* add input API description

* add display API

* rewrite display names

* migrate to valuemanager

* add LED API

* add closing brakets

* add sound api

* fix led api

* basic api

* rename API pages

* change pubsub implementation

* move FURI AC -> flapp, add valuemutex example, add valuemanager implementation

* pubsub usage example

* user led example

* update example

* simplify input

* add composed display

* add SPI/GPIO and CC1101 bus

* change cc1101 api

* spi api and devices

* spi api and devices

* move SPI to page, add GPIO

* not block pin open

* backlight API and more

* add minunit tests

* fix logging

* ignore unexisting time service on embedded targets

* fix warning, issue with printf

* Deprecate furi_open and furi_close (#167)

Rename existing furi_open and furi_close to deprecated version

* add exitcode

* migrate to printf

* indicate test by leds

* add testing description

* rename furi.h

* wip basic api

* add valuemutex, pubsub, split files

* add value expanders

* value mutex realization and tests

* valuemutex test added to makefile

* do not build unimplemented files

* fix build furmware target f2

* redesigned minunit tests to allow testing in separate files

* test file for valuemutex minunit testing

* minunit partial test valuemutex

* local cmsis_os2 mutex bindings

* implement furi open/create, tests

* migrate concurrent_access to ValueMutex

* add spi header

* Lib: add mlib submodule.

Co-authored-by: rusdacent <rusdacentx0x08@gmail.com>
Co-authored-by: DrZlo13 <who.just.the.doctor@gmail.com>
2020-10-13 11:22:43 +03:00

403 lines
10 KiB
Markdown

# Flipper universal registry implementation (FURI)
Create record.
```C
// creates new record in registry and store pointer into it
bool furi_create(const char* name, void* ptr);
```
Open record.
```C
// get stored pointer by its name
void* furi_open(const char* name);
```
# Flipper Application control (flapp)
## (in progress. Old verison)
**`FlappHandler* flapp_start(void(app*)(void*), char* name, void* param)`**
simply starts application. It call `app` entrypoint with `param` passed as argument. Useful for daemon applications and pop-up.
**`FlappHandler* flapp_switch(void(app*)(void*), char* name, void* param)`**
swtich to other application. System **stop current app**, call `app` entrypoint with `param` passed as argument and save current application entrypoint to `prev` field in current application registry. Useful for UI or "active" application.
### Exit application
**`void flapp_exit(void* param)`**
stop current application (stop thread and clear application's stack), start application from `prev` entry in current application registry, cleanup current application registry.
**`bool flapp_kill(FlappHandler* app)`**
stop specified `app` without returning to `prev` application.
**`void flapp_ready()`**
If case one app depend on other, notify that app is ready.
## Requirements
* start daemon app
* kill app
* start child thread (kill when parent app was killed)
* switch between UI apps
**`bool flapp_on_exit(void(cb*)(void*), void* ctx);`**
Register on-exit callback. It called before app will be killed. Not recommended to use in user scenario, only for system purpose (unregister callbacks, release mutexes, etc.)
# ValueMutex
The most simple concept is ValueMutex. It is wrapper around mutex and value pointer. You can take and give mutex to work with value and read and write value.
```C
typedef struct {
void* value;
size_t size;
osMutex mutex;
osMutexDescriptor __static // some internals;
} ValueMutex;
```
Create ValueMutex. Create instance of ValueMutex and call `init_mutex`.
```C
bool init_mutex(ValueMutex* valuemutex, void* value, size_t size) {
valuemutex->mutex = osMutexCreateStatic(valuemutex->__static);
if(valuemutex->mutex == NULL) return false;
valuemutex->value = value;
valuemutex->size = size;
return true;
}
```
For work with data stored in mutex you should call `acquire_mutex`. It return pointer to data if success, NULL otherwise.
You must release mutex after end of work with data. Call `release_mutex` and pass ValueData instance and pointer to data.
```C
void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout) {
if(osMutexTake(valuemutex->mutex, timeout) == osOk) {
return valuemutex->value;
} else {
return NULL;
}
}
// infinitly wait for mutex
inline static void* acquire_mutex_block(ValueMutex* valuemutex) {
return acquire_mutex(valuemutex, OsWaitForever);
}
bool release_mutex(ValueMutex* valuemutex, void* value) {
if(value != valuemutex->value) return false;
if(!osMutexGive(valuemutex->mutex)) return false;
return true;
}
```
Instead of take-access-give sequence you can use `read_mutex` and `write_mutex` functions. Both functions return true in case of success, false otherwise.
```C
bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(data, value, len > 0 ? len : valuemutex->size):
if(!release_mutex(valuemutex, value)) return false;
return true;
}
inline static bool read_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return read_mutex(valuemutex, data, len, OsWaitForever);
}
bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(valuemutex, timeout);
if(value == NULL || len > valuemutex->size) return false;
memcpy(value, data, len > 0 ? len : valuemutex->size):
if(!release_mutex(valuemutex, value)) return false;
return true;
}
inline static bool write_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return write_mutex(valuemutex, data, len, OsWaitForever);
}
```
## Usage example
```C
/*
MANIFEST
name="example-provider-app"
stack=128
*/
void provider_app(void* _p) {
// create record with mutex
uint32_t example_value = 0;
ValueMutex example_mutex;
if(!init_mutex(&example_mutex, (void*)&example_value, sizeof(uint32_t))) {
printf("critical error\n");
flapp_exit(NULL);
}
if(furi_create("provider/example", (void*)&example_mutex)) {
printf("critical error\n");
flapp_exit(NULL);
}
// we are ready to provide record to other apps
flapp_ready();
// get value and increment it
while(1) {
uint32_t* value = acquire_mutex(&example_mutex, OsWaitForever);
if(value != NULL) {
value++;
}
release_mutex(&example_mutex, value);
osDelay(100);
}
}
/*
MANIFEST
name="example-consumer-app"
stack=128
require="example-provider-app"
*/
void consumer_app(void* _p) {
// this app run after flapp_ready call in all requirements app
// open mutex value
ValueMutex* counter_mutex = furi_open("provider/example");
if(counter_mutex == NULL) {
printf("critical error\n");
flapp_exit(NULL);
}
// continously read value every 1s
uint32_t counter;
while(1) {
if(read_mutex(counter_mutex, &counter, sizeof(counter), OsWaitForever)) {
printf("counter value: %d\n", counter);
}
osDelay(1000);
}
}
```
# PubSub
PubSub allows users to subscribe on notifies and notify subscribers. Notifier side can pass `void*` arg to subscriber callback, and also subscriber can set `void*` context pointer that pass into callback (you can see callback signature below).
```C
typedef void(PubSubCallback*)(void*, void*);
typedef struct {
PubSubCallback cb;
void* ctx;
} PubSubItem;
typedef struct {
PubSub* self;
PubSubItem* item;
} PubSubId;
typedef struct {
PubSubItem items[NUM_OF_CALLBACKS];
PubSubId ids[NUM_OF_CALLBACKS]; ///< permanent links to item
size_t count; ///< count of callbacks
} PubSub;
```
To create PubSub you should create PubSub instance and call `init_pubsub`.
```C
void init_pubsub(PubSub* pubsub) {
pubsub->count = 0;
for(size_t i = 0; i < NUM_OF_CALLBACKS; i++) {
pubsub->items[i].
}
}
```
Use `subscribe_pubsub` to register your callback.
```C
// TODO add mutex to reconfigurate PubSub
PubSubId* subscribe_pubsub(PubSub* pubsub, PubSubCallback cb, void* ctx) {
if(pubsub->count >= NUM_OF_CALLBACKS) return NULL;
pubsub->count++;
PubSubItem* current = pubsub->items[pubsub->count];
current->cb = cb;
currrnt->ctx = ctx;
pubsub->ids[pubsub->count].self = pubsub;
pubsub->ids[pubsub->count].item = current;
flapp_on_exit(unsubscribe_pubsub, &(pubsub->ids[pubsub->count]));
return current;
}
```
Use `unsubscribe_pubsub` to unregister callback.
```C
void unsubscribe_pubsub(PubSubId* pubsub_id) {
// TODO: add, and rearrange all items to keep subscribers item continuous
// TODO: keep ids link actual
// TODO: also add mutex on every pubsub changes
// trivial implementation for NUM_OF_CALLBACKS = 1
if(NUM_OF_CALLBACKS != 1) return;
if(pubsub_id != NULL || pubsub_id->self != NULL || pubsub_id->item != NULL) return;
pubsub_id->self->count = 0;
pubsub_id->item = NULL;
}
```
Use `notify_pubsub` to notify subscribers.
```C
void notify_pubsub(PubSub* pubsub, void* arg) {
// iterate over subscribers
for(size_t i = 0; i < pubsub->count; i++) {
pubsub->items[i]->cb(arg, pubsub->items[i]->ctx);
}
}
```
## Usage example
```C
/*
MANIFEST
name="test"
stack=128
*/
void example_pubsub_handler(void* arg, void* ctx) {
printf("get %d from %s\n", *(uint32_t*)arg, (const char*)ctx);
}
void pubsub_test() {
const char* app_name = "test app";
PubSub example_pubsub;
init_pubsub(&example_pubsub);
if(!subscribe_pubsub(&example_pubsub, example_pubsub_handler, (void*)app_name)) {
printf("critical error\n");
flapp_exit(NULL);
}
uint32_t counter = 0;
while(1) {
notify_pubsub(&example_pubsub, (void*)&counter);
counter++;
osDelay(100);
}
}
```
# ValueComposer
```C
typedef void(ValueComposerCallback)(void* ctx, void* state);
void COPY_COMPOSE(void* ctx, void* state) {
read_mutex((ValueMutex*)ctx, state, 0);
}
typedef enum {
UiLayerBelowNotify
UiLayerNotify,
UiLayerAboveNotify
} UiLayer;
```
```C
ValueComposerHandle* add_compose_layer(
ValueComposer* composer, ValueComposerCallback cb, void* ctx, uint32_t layer
);
```
```C
bool remove_compose_layer(ValueComposerHandle* handle);
```
```C
void request_compose(ValueComposerHandle* handle);
```
See [LED](LED-API) or [Display](Display-API) API for examples.
# ValueManager
More complicated concept is ValueManager. It is like ValueMutex, but user can subscribe to value updates.
```C
typedef struct {
ValueMutex value;
PubSub pubsub;
} ValueManager;
```
First of all you can use value and pubsub part as showing above: aquire/release mutex, read value, subscribe/unsubscribe pubsub. There are two specific methods for ValueManager:
`write_managed` acquire value, changes it and send notify with current value.
```C
bool write_managed(ValueManager* managed, void* data, size_t len, uint32_t timeout) {
void* value = acquire_mutex(managed->mutex, timeout);
if(value == NULL) return false;
memcpy(value, data, len):
notify_pubsub(&managed->pubsub, value);
if(!release_mutex(managed->mutex, value)) return false;
return true;
}
```
`commit_managed` works as `release_mutex` but send notify with current value.
```C
bool commit_managed(ValueManager* managed, void* value) {
if(value != managed->mutex->value) return false;
notify_pubsub(&managed->pubsub, value);
if(!osMutexGive(managed->mutex)) return false;
return true;
}
```